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ABSTRACT

An analytical investigation of dynamic buckling of eccentri-
cally reinforced circular cylindrical shells is carried out.
The stringer and ring stiffeners are assumed to be closely-
spaced, and general instabllity is investigated by an "equi-
valent shell"™ approach in that the reinforcement effects are
smeared-out over thelr spacing distances.

A new set of field equations (equilibrium and compatibility)
1s derived on the baslis of large deflection theory. Initial
imperfections and rotatory inertia are included. A radial
displacement assumption is made on the baslis of expected
buckling patterns (checkerboard and diamond) which satisfies
clamped boundary conditions on an average over the circum-
ference. The initial imperfections are assumed in spatial
harmony with the total displacements. A stress function 1is de-
termined that satisfies the compatibility equation.

The theory is applied to a clamped reinforced shell which is
loaded axlally by a controlled rate of endshortening of the
form V= Vo e‘( . Dynamic equilibrium is satisfied in the sense
of Bubnov-Galerkin which leads to a system of two second order
differential equations of the third degree in the checkerboard
and diamond buckling pattern amplitﬁdes.

These differential equations are solved numerically for a parti-
cular shell for which static test results have been reported.
It is shown that a fourth order Runge-Kutta method leads to para-

doxial results due to instability of the numerical method.




A combined Runge-Kutta Predictor-Corrector method resolves these
paradoxes.

For "static" rates of endshortening,d’=0, and imperfections of
the order of manufacturing tolerances, it is shown that the
predicted buckling load is in good agreement with the repor-

ted static value.

The effects on the dynamic buckling load of rotatory inertia,
magnitude of Vo, size and direction of initial imperfections,
and time constant %- are given for a limited parameter range.

An elghth order linear Donnell-type static buckling differential
equation 1s derlived also and then applied to the shell under
consideration. For mode numbers corresponding to those reported
in the tests, good agreement exists between predicted and measured
buckling loads.

The concept of stiffener location effectiveness 1s introduced
within the scope of linear classical theory and the assumption
of equal mode numbers for both reinforcement locations.

A stiffener location effectiveness optimization chart for

the particular shell clearly reveals that the increase in the
buckling load due to external stiffener location’depends on

the mode numbers.




11

PREFACE

Design advantages of using eccentrically reinforced circular
cylindrical shells have been predicted [32] and experimentally
verified [34] for shells which are subjected to statlc axial
loads.

It 1s the purpose of this dissertation to extend thils
scope to include dynamic axial loads.
The dynamic buckling loads of a clamped reinforced circular
cylindrical shell, loaded axially by a controlled rate of
endshortening of the form V-Voe-( y, are determined numerically.
Geometry and material parameters are used that correspond to
a particular shell for which static test results are avalilable
[34].

The effects on the dynamic bucklling load of rotatory
inertia, magnitude of Vo, size and direction of initlal
imperfections, and time constant L are given for this parti-

t

cular shell within a limited range of parameters.
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A cross sectlonal area of column, see p.69, also total composite
shell cross section, see p.84, Table(VI-1)

As cross sectional area of stringer

Ap

Al Alry function symbol

All; Alz; A13; A22 flexibility coefficients of composite shell,
see summary p.l53: with superscript (0) for quasi-orthotropic
shell, see p.43.

8103 85, flexibility coefficient ratios, defined p.54

a sinusoidal buckling half wavelength in axial direction, p.l5

B subscript for buckling variables

Bl""'°B7 coefflcients of differential equation (A-4),

defined on pp.1l47-148; with superscript (C) for column, with

superscript (0) for zero imperfections

Bi Alry function symbol

cross sectional area of ring

b sinusoidal buckling half wavelength in circumferential
direction, p.l5
Cl""'C9 coefficients of differential equation (A-lﬂ);
defined on pp.150-152, with superscript (O) for
zero imperfections
# Dyi Dgi Dgi Dpi Dggs Dgpi Dygi Dygpi Dyggé Dyggi Dy# Dps DyqiDygs
oo flexural rigidities, see summary on p.1l54
stringer spacing, see p.l5

endshortening, defined on p.64

o o A& O Y

average endshortening, defined on p.66
H ES H EB Young's modull of monocoque shell, stringer and ring
Fys F2 right hand sides of differential equations (VI-2), p.87

Fx :Fy Force acting on stringer in x-direction, respectively

=

on ring in y-direction
F function of y, see p.60
FSb force eccentricity coefficlient for stringer
FRb force eccentricity coefficient for ring
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f

f
f
f
G

xil

stress functlion for zero imperfections
1 time-dependent amplitude of the checkerboard buckling
pattern
o amplitude of the initlal imperfection checkerboard pattern
P static stress function, referring to prebuckling
B static stress functlion, referring to buckling
: GS : GR shear modull of monocoque shell, stringer and ring

8y tlme-dependent amplitude of diamond buckling pattern

g, amplitude of the initial imperfection diamond buckling

H
h
1
I
I
I

I

I

I

k

pattern. '
dynamic equillbrium expreéssion used in Galerkin's integral,
defined on p.68
monocoque shell thickness, also time-step slze
dummy variable, used on p.33, indicating particular location
area moment of inertia of column, see pp.69 and 70

go area moment of inertia of the stringer cross section wlth
respect to the local y-axis

gc area moment of inertia of the stringer cross section with
respect to an axls parallel to the y-axis through the centroid
of the stringer cross section

Ro area moment of inertia of the ring cross section with respect
to the local x-axis

Re area moment of inertia of the ring cross section with respect
to an axis parallel to the x-axls through the centroid
of the ring cross section

7 composite mass moment of inertlia per unit length, defined
on p.27; with superscript (0) for the quasi-orthotropic
shell, see p.43

K; Kv; KG; KP; KS; KR; KMS; KMR extensional stiffnesses, see
summary on p.l53
13 k2 nooooklo coefficients in stress function differential

k

equation, defined on p.54 and 55
1} kzz k3 Runge-Kutta parasmeters, see p.88

L length of composite cylindrical shell
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é(m)

f;; {zz, le} 4& ) linear operators, defined on pp.122-124
e ring spacling, see p.l5

0. ez Runge-Kutta parameters, defined on p.88

Mx; M

-

; :
y Mxy; Myx' Mxy moments per unit length of the composite
shell; with superscript (S) for stringer; with super-

seript (R) for ring

M(s); Més); MéR) bending and twisting moments of stringer
and ring )
7”,; ZZ, Surface moments of the composite shell, see p.24
m smeared-out mass per unit area of composite shell
m number of sinusoidal buckling half wavelengths in
the axial direction
(m) superscript, referring to monocoque shell

Nx; Ny; ny; Nyx stress resultants of the composite shell;
with superscript (S) for stringer, with (R) for ring

NxA applied compressive load per unit circumference
in the axial direction

ﬁ?o“ﬁ&o compressive average stress resultants, where subscript
o refers to being independent of x and y

-§oxMAX maximum of ﬁox(t) curve

Noxc critical dynamlc axlal buckling lomd, defined as the
lowest of all NoxMAX

NxP; NyP; nyp static prebuckling stress resultants, where the
first two quantities refer to compresslive stresses

Nox static compressive stress resultant, independent of x
and y

Noxc critical static axial buckling load, minimized with
respect tom and n

n number of sinusoidal full buckllng wavelengths in

the circumferential directlion
Ngi np number of equally spaced stringers and rings
. P subscript to denote prebuckling variables
maximum total buckling load
P external lateral pressure
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partial differentiation: denoted by comma, followed by in@e-
pendent variable with respect to which the differenti-
ation applies .

Ql; Qz; Q3 coefficients, defined on p.79

Q

H Qy shear stress resultants, with superscript (m) for

* monocoque shell, see pp.l2 and 24

R radlus of middle surface of monocoque cylindrical shell
Rl; Rz; R3; Ru constants defined on p.80

rg radius of gyration of column, see p.70

Sll; 812; 813; Slb‘ 822 eccentricity parameters, see pp.30
and 31; also in summary p.l53

s Laplace transform variable; quantities with bar denote trans-
formed variables

T kinetic energy; with superscripts (m), (S) and (R), for
monocoque shell, stringer and ring.
t time

tf ;'tg' upper time limits for asymptotic expansions, see p.82
U 1 1 straln energy
Uje....Ug coefficients, see p.75, with superscript (0) for

constant rate of endshortening

u tangential displacement of the middle surface in the
axial direction, also used as fl(t)=u(z), see p.78

\' time varylng rate of endshortening

\' magnitude of rate of endshortening

o
Vi V12; Vops Voo VBl; V32; Vip s Vuz; VS; V¢ coefficlents,
defined on p.76

V{O).....Véo) coefficlents for constant rate of endshortening,
see p.77

v tangential displacement of middle surface in
circumferential direction

W extefnal work

w 1ateraild1sp1acement of middle surface, positive toward
the 1nsldé; also net lateral displacement

W(l) total lateral displacement of the middle surface

W(O) initial imperfection displacement of the midsurface




v

X surface force per unit area in axial direction, see p.24

X coordinate in axlal direction, see p.l2; also indicating
time in numerical work, see p.87

Y surface force per unit area in circumferential direction

y coordinate in clircumferential direction, see p.l2; also

identical with fl’ see p.87
surface force per unit area in lateral direction
z coordinate 1in lateral direction, positive inward, see p.l2;
also identical with gy, see p.87; furthermore used in
time transformation (V-31), see p.78
Eé; ER centfoidal coordinates of stringer and ring cross sections,
positive inward from middle surface
Z, constant, defined on p.80
[0 axlal buckling wave parameter, defined on p.51
f3 circumferential buckling wave parameter, see p.51
g exponential decay coefficient, reciprocal of time constant
&7 shear strain of middle surface
&WT shear strain at some distance z from the midsurface
variational symbol
A  determinant, defined on p.72
€y’ ey mlddle surface strains in the axial and circumferential
directions
j coordinate from the middle surface in the z-direction
where NxA is applied
4 stiffener location effectiveness, defined on p.129; also
generic variable for z or T , see p.8l;
buckling aspect ratio, defined on p.89
0 imperfectiqn coupling frequency parameter, defined on
P.71, also used as dummy integration variable, pp.79-80
Ajeeesedyy cOefficlents of stress function, defined on p.56
lli AZ: ka 14 initial condition parameters, defined on p.80
A generic varlable parameter, defined on p.81
/gn-yu, composite shell parameters, see summary p.l54, with
superscript (m) for monocoque shell
v Poissoﬁ's ratlo of monocoque shell
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§ mode parameter, defined on p.126; also dummy integration

variable, see p.60
P; Pgs Pp mass densities of monocoque shell, stringer and ring

.3 O normal stresses in axial and circumferential directions,

X y

with superscripts (m), (S) and (R), referring to
(m) (m) monocoque shell, stringer and ring
Q’; Qw shear stresses of the monocoque shell

T time transformation variable, defined on p.78
@ stress function with imperfections
Wy W, clrcular frequencies, defined on p.72, with superscript
(0) for zero imperfections
G2 mode parameter, defined on p.l25
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INTRODUCTION

The literature on shell theory has mushroomed in the past one
to one-and-one half decades so that it becomes a major under-
taking just to become up-to-date on what has been done.
Fortunately, some excellent survey articles [1-11] * exist
which make this task considerably easler. Comprehensive biblio-
graphles are avallable in the works [12-15J.

It would be beyond the scope of this dissertation to give a
historical survey of the major contributions in shell stabili-
ty theory. A few remarks are in order, however, to indicate
the relative position of this dissertation in regard to the
overall field.

Let us restrict ourselves to cylindrical shells and discuss

static and dynamic stabllity investigations separately.

l. Static Stablility Investigations.

The large discrepancy between theoretically predicted static

axlal buckling loads on thin monocoque (unstiffened) cylindri-

cal shells and experimentally measured values has been the

toplc of research of many people over many years. Large deflection
theory, imperfections, and the influence of boundary conditions
were found to explain away a good share of this discrepancy
QL6-22],

Static stability investigations of stiffened cylindrical shells
are not numerous by comparison. One of the earlliest analyses

1s glven in Fliigge's habilitation paper [23]. During the second

* Numbers within square brackets refer to the reference list
at the end.
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World War a program of ‘analytical and experimental investi-
gatlon was initiated at the Guggenheim Aeronautical Laboratory
of the California Institute of Technology [24). These efforts
generated some empirical relations involving a combination of
loading conditions.

Let us briefly discuss some concepts peculiar to stiffened
shells. When the number of stiffening elements (stringers and
rings) is small and therefore their interbay distance at least
of the order of the buckling half wavelength, a discreet treat-
ment of the stiffening elements, interacting with the monocoque
shell, is necessary. In such cases the skin alone might buckle
between the gridwork of stiffeners (interbay buckling or local
buckling in the large). One might reduce such problems to those
of panel stability with boundary conditions corresponding to
stiffeners of varying degrees of fixity. A great deal of design
information of this kind is available in the NACA "Handbook

of Structural Stability" (25). This dissertation willl not be
concerned with problems of this kind.

When the number of stiffeners ls large so that their interbay
distance is small with respect to the buckling half wave-
length, buckling occurs simul taneously for both, skin and
stiffeners, and one speaks of general instability. A distributed
approach 1s usually taken in that the stringer- and ring stiff-
nesses are smeared-out over their interbay distances so that

an "equivalent cylindrical shell" is treated analytically.

Two more distinctions become necessary:

- The centroids of the stringers and rings lie on the middle

surface of the monocoque cylindrical shell. In this case, the

—




- equivalent shell is analogous to a "quasi-arthotroplc" shell

with its principal elastic directions along the generators and
circles of the shell [26;27;28).

- The above mentioned centroids are off-set from the mlddle
surface., Such structural shells are called eccentrically rein-
forced shells.

In the papers [23:29:;30;31] , static stability analyses are
presented using the equivalent shell approach. Small deflection
theory is employed, while eccentriclity effects are entlirely
neglected. As early as 1947, Van der Neut [32) demonstrated

the lmportance of eccentricity in determining the buckling
strength of stiffened cylindrical shells. Unfortunately, this
early report seems to have been largely neglected. It took the
pressures of the space race to renew such interests [33-37].

The sign (inward or outward) of the eccentricity of stringers
and rings affects the magnitude of the buckling load drastically.
This has been verified experimentally [34] to the extent that

a particular externally stiffened cylinder under axial compression
has been shown to carry over twice the load sustailned by its
internally stiffened counterpart. Small deflection théory is
used in all these reports except in the paper [35]). The use

of the small deflectlon theory for stiffened cylindrical shells
1s commonly argued on the basis that imperfections are small
with respect to the equivalent shell thickness 1in contrast

to the monocoque shell., Experimental evidence 1s however lacking

to support such an assumption. In addition, it was already pointed
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" out that the imperfections are only part of the story for the

monocoque shell.

2. Dynamic Stablillity Investigatlions,

Prior to discussing dynamic stability, we might call attention
to some papers dealing with lateral vibrations of the monocoque
cylindrical shell in small deflection theory ([38;39;:;40], and
stiffened cylindrical shells with the same restrictions
C36:37:41].

Almost in a class by themselves are the so-called parametric
instablility problems, discussed by Evan-Iwanowskl in the articles
(6;7]). They have only recently been attacked, and for the most
part, for much simpler structural elements [42]. In these,
disturbances (generalized loads) are of the sustained periodic
type and instability reglons can be determined from the resul-
ting H1ll or Mathlieu differential equations. As far as cylindrical
shells are concerned, information is meager. The papers [43;44)
treat the problem of parametric instabllity of a monocoque
cylindrical shell subjected to an axial pulsating load, using
small deflection theory. Report (45] gives results for the case
of a monocoque cylindrical shell loaded by a constant axial
force in combination with a pulsating lateral pressure, restric-
ted to small deflection theory.

As far as nonparametric dynamic stability investigations are
concerned, we might speak of those problems involving nonperi-

odic disturbances either applied laterally or axially.




. The former seems to be the easlier problem while the latter
usually requires the introduction of some kind of imperfection
or eccentricity of the axial disturbance. A lateral step
pressure is applied to the monocoque cylindrical shell

in report ([(49) using small deflection theory. This paper con-_
tains a few Russian references on dynamic stabllity. The
Russians seem to be pioneers in this fleld, Agamlirov and Volmir¥*,
(46] nave used large deflection theory to treat the mono-

coque cylindrical shell under a lateral ramp pressure and axlal
compression. Little detalls are shown, however, for the latter
case. They give credit to Hoff [47;48) for having initiated
dynamic buckling with the case of the column. Subsequent domestic
variations of Agamirov and Volmir's approach can be found in

the reports [50:51;52;53). The GE-report [51]) deals with an
experimental investigation of impact of monocoque shells. It
also contains a theoretical analysis of the dynamlc stabllity

of a monocoque cylindrical shell which is subjected to a
constant rate of endshortening in the manner of Hoff's treatment
of the column ([47). No comparison between experiments and theory
is shown. It appears furthermore that the results defy physical
reasoning in that the dynamic buckling loads show no minimum
value, but become lower and lower with increasing mode numbers.
With the exception of paper C52] which deals with transverse
nonlinear vibrations of orthotropic cylindrical shells, all

Fhese references are restricted to monocoque cylindrical shells.

* His book on flexible plates and shells i1s now avallable in
a German translation [49) .




. 3. Néw Features of the Present Topic.

The difficult problem of the dynamic stabillity of cylindrical
shells in axial compression has not been treated adequately

in the literature. Of the two references on the monocoque shell

known to the author, the first E463 does not provide sufficient

details for judgement, while the second [51) leads to results

which are doubtful.

The topic of the dynamic stablility of eccentrically reinférced
cylindrical shells in axial compression fills therefore a gap,

not presently covered.

The author feels that this dissertation contains certain new

features and makes contributions which should lead to a better

understanding of this particular topic. Among theses, one

might list:

~-Large deflection theory applied to the dynamics of the eccentri-
cally reinforced cylindrical shell.

~Inclusion of initlial imperfections in connection with

eccentric stiffening.

-Derivation of new dynamic field equations with and

without inltial imperfections.
-Inclusion of rotatory inertia.

-Clarification of paradoxial results obtalned by inadequate

numerical integration techniques, such as used 1ln reference (51].

-Determination of the quantitative influence on the dynamic




buckling load of rotatory inertia, rate of endshortening,
direction of initial imperfections and time constant of

exponentially decaylng endshortening for the case of a

particular shell.

-Close agreement between predicted and tested buckling load
for the case of a particular shell in "static" reduction

of the theory.

-Derivation of a linear classical eighth order Donnell-type
differential equation for static buckling of an eccentrically

reinforced cylindrical shell.

-Evaluation of the concept of stiffener location effectiveness
with a simple graphlcal "optimization chart™ for a pafticular
shell.

L,0rganization and Preview.

The maln body of this dissertation is divided into eight chapters.
Chapters I and II develop the governing equations from basic
principles and certaln assumptions. This effort culminates in

a set of new field equations which form the basis of the rest

of the development.

Chapter III extends these fleld equations to include initial
imperfections. _

In Chapter IV, a radial displacement assumption is made from
which a stress function 1s obtained that satisfies the compa-
tibility equation. The initlal imperfection displacement is

assumed to be in "spatial harmony" with the total displacement.




~ Boundary and closure conditions are dlscussed in detall.

Chapter V takes up the problem of a clamped eccentrically
reinforced cylindrical shell subjected to a controlled rate

of endshortening. The average stress resultant at the ends is
derived 1n terms of the buckling pattern amplitudes. The Bubnov-
Galerkin method 1s applied in order to satisfy the dynamic
equilibrium equation with the derived stress function and the
assumed radial displacement., There results a palr of simulta-
neous second order differential equations of the third degree

in the buckling pattern amplitudes. The remainder of the chapter
concentrates on these important equations and demonstrates
physical insight through the consideration of simplifiled cases,
whose solutlons are also included.

In Chapter VI, numerical methods are discussed briefly and then
applied to the practical problem of a stringer shell which Card
(34) tested statically. It is clearly demonstrated that the
application of the Runge-Kutta method over the full range leads
to paradoxial results. A combined Runge-~Kutta Predictor-Corrector
method resolves these paradoxes and leads to results which are
in agreement with physical intultion. The critical dynamic
buckling load 1s defined and a criterion is given for selecting
it. The remainder.discusses the effects of various factors on
the critical dynamic buckling load.

In Chapter VII, the static buckling equations are derived in
order to present a more complete picture of the topic of the
eccentrically reinforced cylindrical shell. Prior to this

derivation, the static reductlion of the dynamic theory is de-
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. monstrated for Card's shell and close agreement is shown bet-
ween predicted and measured buckling load. A linear Donnell-
type eighth order differential equation is derlved for static
buckling. It 1s then applied to Card's shell also and a compa-
rison is made between theory and test. The problem of selecting
the proper mode numbers is discussed. Finally, the concept of
stiffener location effectiveness is introduced. Under the
assumpfion of equal mode numbers for externally and internally
stiffened shell, an analytic expression 1s given for the stiffener
location effectiveness. A relatively simple graphical "optimi-
zation chart"™ 1s presented for Card's shell.

Chapter VIII presents a summary, gives conclusions and indi-

cates future work needed on this complex topic.
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\ CHAPTER I : FORMULATION OF THE DYNAMIC EQUILIBRIUM

EQUATIONS FOR THE ECCENTRICALLY REINFORCED
CYLINDRICAL SHELL.

1. Stress Resultants and Moments for the Shallow Monocogue

Cylindrical Shell.

The plane stress-strain relations of the engineering theory
of elasticity are assumed to be valid for the monocogue
shell. Denoting these stresses with superscript (m),

they are stated as,

(m) )

6 =2 (&r tv &) |
(m)
% = /51 (&7 + ¥ &) ? (1-1)
£

Ky = O y

where the usual symbols are used, and where the subscript T
on the strains refers to the total strain at any heilght

in the thickness directlion z.

The strains in the middle surface are written without
subscript. It is assumed that stralght lines normal to the
middle surface remaln straight, unstretched and normal to the

middle surface after deformation. The total stralns are then

related to the midsurface strains by,

5}7 = é} -2 h&xx

Cgr = &= 2 Wyy (1-2)

(vyr = (xy 22 Yixy
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where Wy w,yy, and W’xy are the approximate changes in
curvature and twist of the midsurface, and the usual comma
notation for partial differentiation has been employed.
Figure (I-1), shown below, illustrates the chosen coordinate
system, the stresses and displacements in regard to a
monocoque shell segment of thickness h, and middle surface

radius R.

(m)

Figure (I-1) : Coordinate System, Stresses and Dlsplacements

on a Monocoque Shell Segment.

The monocoque cylindrical shell is assumed to be shallow
)
(%4%“1 ) such that the stress resultants, moments and

shear forces can be approximated by,

2
0y bm) vy ) (m) 2
N = [ & 42 /\/; = [6 4 (1-3)

~h 2 A
[N
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b 4 ~
(m (m) (m) tm)
/fo = | ’Cxidi' /g« =/Z}X 4‘2_
% P
z 4 . Z 4
( )
QTZ ’&:)4;_« QJ = [ Cad? ? (I-3)
<4
Zh 2

Z%; 2d2 72 & /)

where the superscript (m) refers again to the monocoque
shell, and the convention adopted 1s shown in Figure (1-2)

below:
m)

ILJ (m) étj

Ny

Figure (I-2) : Middle Surface Stress Resultants, Shear Forces

and Moments on a Monocoque Shell Segment.
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Introducing equations (I-2) into (I-1), the stress resultants
and moments can be evaluated by integrating expressions (I-3),

which yields the result;
Nx(m= K& + K &
N"= K& + K&
N’fm = K‘(f"# > (I-4)
Hm‘-(D"’”‘ + Do)

" =-(Dm b + D i)
an-- Ix ’DGNIJ )

where use has been made of certain stiffness and rigidity
parameters which are defined as:

k-_Eh k. vEh ko Eh__ch )

-2 YEept € =20140)

7 (1.-5)

ER3 vER’ __E¥ G
b = 2017 b 12(1-v9 D"/Z(/*') -6

The stress resultants and moments of the monocoque
cylindrical shell can be cast into the following

matrix form:




(i \
(NY [k & 0 0 0 O (&,
N, 0 Kk O O O
(= 6 R
Mx 0 0 0 ‘D -Dy 0 ”oxx
M, 0 0 0 -B-D 0 Way

2. Stress Resultants and Moments for the Eccentrically
Reinforced Shallow Cylindrical Shell.

The monocoque cylindrical shell is assumed to be stiffened
by an or@hogonal net of stringers and rings, parallel

to the x- and y-coordinates, the centrolds of thelr
respective cross sectional areas belng off-set from

the middle surface.

A typical reinforced shell segment is shown in Figure
(I-3) below:

14
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Typlcal Ring

Figure (I-3) : Typlcal Eccentrically Reilnforced
"~ Cylindrical Shell Element.

The dlstances between stringers, 4, and rings, e‘, are
agsumed small with respect to the buckling half wavelength
since we are interested in the general stabllity of the

reinforced shell. This condition may be stated as follows:

_ 2IR

tet 2n (I-7)

. | I-7
L

bca=—-

where a and b are the buckling half wavelengths in the axlal
and circumferential directions, while m and 2n are the number

of half waves in these directions, L being the length of the
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reinforced shell.
It is assumed that the stringers and rings can be treated
as beams. On account of the shell being shallow, the rings
can be treated as stralght beams. For rectangular cross
section rings of moderate height, it 1s common practice
to treat a ring as a straight beam in pure bending when the
radius of curvature-to helght ratio exceeds about ten.

The condition of continuity of the stralns must
be satisfied at the interfaces between monocoque shell,
stringer, and ring.

The stresses are given by,

)
6y = E;‘Ex = E;£?‘%XK

R)
Ez? = E%:ga “Eki!'%&;

(1I-8)
where the super- and subscripts S and R refer to stringer
and ring.

When the materials are different for the monocoque
shell, stringer, and ring, there 1s a stress discontinulty

at the respective interfaces.

a) The Contribution of Stringers and Rings to

the Stress Resultants.

The force, acting in the x-direction on a stringer cross

section, can be obtained by integrating the first equation
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of (I-8) over the cross sectional stringer area AS.
Similarly, integrating the second equation over the ring
cross sectlional area AR’ leads to the force on the ring

cross section in the y-direction. The result becomes,

f = E A, - t;w,xx/edA_,= E A&, ~ B ASE W
As —
- Eele€y - Eugy (2 dhe = Euhey - Eeede My
AR
where Zg and Zp are the centroldal distances from the
middle surface. In the above integration it was tacitly
assumed that the strains and curvature changes of the mid-
surface can be consldered constant. This 1s justified on
the basis that the reglon of the cross sectlional areas covers
only a fraction of the stiffener distances, the latter
being small with respect to the buckling half wavelengths.
In order to arrive at a composite stress resultant
due to stringers and rings, let us smear-out both force

contributions over their stiffener spacings, e.g.
SV EAs &
NX .= —s_‘s Ex - '43 'VIKX

’%;H ,P_éyﬁiéé _Juﬂﬁgk;v

(I-9)

Any contribution to the shear stress resultant due to

stringers and rings is assumed negliglble.
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b) The Contribution of Stringers and Rings to the Moments.

Let us take moments of the forces due to the stresses of
equations (I-8) about the local coordinate axes of the
middle surface. With due regard to the sign convention

adopted in Figure (I-2), we obtaln:

M($)= /(Esfxz - Eg W 2°) ddis = £ A 26 - Es Lo Winx
As

where ISo 18 the area moment of inertla of the stringer
cross section with respect to the local y-axis of the
middle surface.

Smearing-out thls moment contribution over the stringer
spacing d, the stringer component of the composite moment
per unit length is obtalned. Similar considerations apply

to the ring. We thus arrive at the following expresslons:

Mis)=£$at4§z§fx - E;aléﬂ_wmx

R F A Eel
My __&Z_R_&gy__Le_sa_w,”

(I-10)

Twisting of the stringer and ring‘boccurs due to the

twisting curvature change w,xy of the midsurface. Neglecting
any possible rigidization due to the junction of the stiffeners
and assuming free warping, the contributions to the twisting

moment of the stringer and ring can be written as,
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where J, and JR are the torsion constants of the stringer

S
and ring cross sections and use has been made of our adopted
sign convention.

Smearing-out these twisting moment contributions over the

stiffener spacings, we obtain:

(5) W
X
(R) 7_2 " (I-11)
Max =~ G J- MK;

¢) The Composite Stress Resultants and Moments of the

Eccentrically Reinforced Circular Cylindrical Shell.

By adding corresponding stress resultants and moments
from equations (I-%), (I-8), (I-10), and (I-11), composite
stress resultants and moments are obtained. These refer
to the middle surface of the monocoque shell and can be

written as:

m Nx(m)"'N)((S): K& + k£, + Q_Aggx - §_AS_Z1 W

/Vy = /%:MIwF Aé kfé' + k;é; E.zl ;, -J%ﬁgjk/Vay

bm) (™) _
ny= NX = )(J —Nax = kG J{(] (1-12)

3

N
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T
. M ”(7‘") 15)_ -DN:XX D"lej + £$_,4L§E .Ej_'L_QM
M, = M(’"'+H --D“w prx*—%a‘—‘f =5 Mgy | (1-12)
= o + *: De Wy + % iy )
Myx a?)J‘ yx = —DG J —L&' W,Xi

Since the stress resultants and moments are related to
the middle surface strains and curvature changes, it seems
only natural to lump corresponding coefflcients. This

leads to the following definitions of parameters:

Ks =—€;—Ai Fss =—"—-Ed'4’ 2 )
KR”—%AR '%b"%‘ég 2

kSYS = ﬁ:*'kg = 1;22 *_1%;45
Kug = K *+ ke =-Eb; E; )

D$=%Z-i" (I..sc"z.sAs)

DR =%—&=%(Ikcf‘z‘kAR) ? (1-13)
Dss = —5= 63; Dsg = —?’i

Dns = D +0s= :sz’w) + L (L +34)

Dpg = D + De= m *7&(1}##4:2) 1
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5>

_ Gk, GsJs
DNG$= De ’L‘Dés" 6 * ;s

GrJe
Drer = Ds "'DGR“‘“ e

(I-13)

The K's are extensional stiffness parameters, the D's are
flexural rigidity parameters and the F's are eccentricity
force coefficients. The latter are "signed" quantitiles,
taken positive for internal stiffeners. ISC and IRC are
the area moments of inertia with respect to parallel
centroldal axes for stringer and ring.

Rewriting equations (I-12) with these parameters, yields:
Ny= Kus& + K 53 ~ Fsp Mxx
Ny= K éx + Kinely = Tos Mgy
N)(y= Nyx = KG{"?

Mx = fop &y Dns Wyxx = Dv M” } (I-14)
Mg = Tes Ea - Dy Wyxx = Dug W gy
lqka = Z>H6$ *%xa

H’X 2 - DHGK ”ﬂ(: )

It must be noted that the twlsting moments Mxy and nyx

are no longer of equal magnitude. DGS and DGR are generally

not equal. If we wish to cast (I-14) into a matrix equation,
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similar to (I-6), we can define,

My, = 7 (Mg - Hyx) = (Drss + Duerlizg
= [ Dg + +(Dss + Derl] oy

and introduce:

D, = Dg + 5 (Dss + Dsr) (I-15)

Mxy can be interpreted physically as an effective twisting
moment for which the differences of torsional stiffnesses
of stringers and rings are averaged out.

The stress resultants and moments of the eccentrically
reinforced circular cylindrical shell can now be written

in the following matrix form:

() _ )
NX KHS /(y 0 "3b 0 0 fx
N’ KP I(/NR 0 0 ‘ng 0 EJ
JA&, C> C7 ka (9 C? C) I%? ‘
$= { (I-16)
W (™l B 0 0 Bs-0 0 | |Wa
My 0 Fhy O 0 -0m0 <7
H,] \o 0 0 0 0 b \ Wy

In contrast to the matrix of equation (I-6) for the monocoque

shell, the above matrix is no longer symmetric.
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3. Stress Resultants and Moments in Terms of Displacements.

Considering the radial displacements to be large 1n
comparison with the tangential (middle surface) displacements

u and v, the strain-displacement relations are given by:

2
éx= u/X +21 W/A
Lt
ga = V'a */-Z N,y E (1-17)

[xg =ty +Vix +HxHy

The above strains are not independent of each other. They

must satisfy the compatibility equation for large deflections,
given by:

2
- | W, xx
Ex'ay + a'xx ﬁ(’/x; = 'x, 'xx WIJ] -é— (I-18)
With the help of the strain-displacement relations, the

stress resultants and moments for the eccentrically reinforced

shell then become:

N, = Kis (4x +% N/x) + K ( ,;‘,Q) Ebhl,xx

Np= K, (v +1Wx) +K,1R(Lga+,_ - &)~ Tes Mgy
Nx;‘ Nyx = Ks (g +Vix +Wix Wry)
My = Fsb (% *':ZLW:}()“DHSN/X&"Dp W yy 7 (119
Hy= fro (Vy + 4 Wy = %)= Wax ~Dng Mgy

A
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Mxy = Dﬂss WI K?

(1-19)
Myx = -Drer Wixy

L4, The namic uilibrium Equations.,

Let us formulate therdynamic equilibrium equations on the
basis of the smeared-out eccentrically reinforced shell
element of the middle surface. Figure (I-4) below illustrates

such an element,

Figure (I-4): Composite Stress Resultants and Moments of the

Smeared-out Stiffened Middle Surface Shell Element,

In addition to the composite stress resultants and moments,
the components X, ¥, and Z of the surface force must be
included. The latter consist of possible traction acting in
the middle surface, pressure normal to the surface, and

d'Alembert forces per unit area due to displacement accele-




rations. For force equilibrium in the z-direction, compo-
nents due to the change in direction of the tangential
forces are taken 1nto account, since the deflected element
must be considered for stability analysis.

Force equilibrium in the three coordinate directions can

be written as:

NX,X + Nax': +X = 0 )
Na'7 + Nxa'x t Y = 0

Ni Woxx +2 Nx, Wixy +N3 Wyy + % ? (1-20)

+ (Nx,x + Nax,,)w,x "‘(Ny,y + NXJ,X)N:]
+ Qx,x + 03,; + Z

"

0 )

Dynamic moment equilibrium equations are formulated about
the x- and y-axes, while moment equilibrium about the
z-axls is identically satisfied. In order to account for
d'Alembert or other surface moments, let us introduce lﬂ,
as the composite moment per unit area about the x-axls,
measured positive in the increasing direction of w,y.
Similarly,”% is the composite moment per unit area about
the y-axis, taken positive in the increasing direction of

Wy_o. The two remaining moment equilibrium equations

X
then become:

MU'# - Mxy,)( - QJ - MX = 0
Mx,x *ng,g - Qx - 772} =0

(I-21)

25
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Differentiating the first equation partially with respect
to y, the second with respect to x, and introducing the

result into equations(I-20), eliminates the shear forces.

Thus, there remains:

Nex +Nyxy + X =0 )
Nyy + Negx + ¥ =0
Ny wxx + 2Ney Wry + _%x + (N Ny )Wy [ (1-22)
+ (N«?'J * N"J/") Wy *+ Muex + ”yx,xg
+ Wygy = Magixy = My = Wllyy +Z2=0)

5. Consideration of Inertia Terms and External Pressure.

Assuming no midsurface tractions, X and Y are just the
d'Alembert forces per unit area. In addition to the external
lateral pressure p, Z also includes the d'Alembert force
per unit area. In order to calculate the latter, we need the
smeared-out mass per unit area of the composite shell, which

can be stated as:

ﬁ-7=/°/’ +/°s§‘ "'/okég (I-23)
where m is the‘smeared-out mass pe} unit area and the

p's refer to the mass densities of the monocoque shell,

stringer and ring.
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X, Y, and Z can now be written as:
X =-m U te
Y ==V
Z = P - Mhe

(I-24)

Let us assume that no traction forces are acting on the inner
and outer composite lateral shell surface.mx andﬂo., involve
then only the d'Alembert moments taken about the x- and
y-axes. In calculating the composite mass moments of inertia,
we assume agaln that the contribution of the stiffeners

can be smeared-out over thelr spacing distance.m and m

then become:
3
M, = - (,o«,é- +79@'—L‘°+/°~;£‘°)h¢,tt
M, - - (of + £ + P50 ) e

Introducing the centroidal area moments of inertia, these

expressions are modified to:

=2 =2
x"( /7+ R'ZkC'I‘AKaQ +/05Ifo52s)M}é

-2
“(/O/T +/0 [scf-A:&s f./ok I&Zfﬁi‘)wm&

(I-25)

Defining a composite mass moment of inertia per unit length,

In = ptf + o RaphB op Teghe® oo
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the above equations can be written as:
i
— |
My = - Lo Wyyee

(I-27)

7)23 = - I Waee
In the sequel, the tangential inertlia forces will be
neglected. This is common practice in shell dynamics.
In essence, such a simplification amounts to assuming that
a disturbance propagates with infinite velocity in the axial
and clrcumferentlial directions, The axial and circumferential
directions are much "stiffer™ elastically than the lateral
direction so that its natural frequencies are much higher
than those corresponding to the lateral direction.
Thus, the problem of wave propagation in the eccentrically
reinforced cylindrical shell will not be considered.

It is therefore assumed that,

Xw.Yz 0 (1-28)
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CHAPTER II : DERIVATION OF THE FIELD EQUATIONS.

1, Thé Dynamic Equilibrium Equations for
Negligible Tangential Inertia.

For vanishing X and ¥, the first two equations of (I-22)
eliminate the two terms in parentheses of the third
expression of (I-22). Utilizing the third equation of
(I-24), and (I-27), the dynamic equilibrium equations

can be written as:

Nx,x *Ngx,y =0 )
N’,’ +/VXJ,X = 0

(II-1)
/Vx W, xx -F¢2,V&y h‘&? f‘/%yp%&? f‘%%a _ ?
+HX,XX +H’/\,X# ’LMJ'JJ - XJ,Xa + r = ’mh;-eé
=L (W xxas W yytt )

2. The Use of a Stress Function.

Let us introduce a stress function f(x,y,t), defined
such that the first two equations of (II-1l) are identically

satisfled, e.g.

<
I

=t
/\/y = f,xx (1I-2)

/Mﬂy =‘"/;X7
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On using equations (II-2) and (I-19), the remaining

equilibrium equation can be manipulated into the form,

- (les W) xxxx +20D, W xxyy + Dug W,
I XXgd T dddd

* sy Wow =2y Wy + fins Wy + Fx

+ Fsp (Uunx + N,;x + Wx Waxx)

* Fes (Yggy +igy + Mg gy = 5480) # p = e =T (Mg
(II-3)

where the addiqcional flexural rigidity parameter D2 is
defined by:

D,_ =D, + z’ (DHGR *Dﬂss) (II-4)

The tangential terms contalning u and v ln equatlon (I11-3)
can be eliminated with the help of the first two equations
of (I-19), where the N's are expressed by the stress function.

After some algebra, there results,

z
Uy = -As fixx + Az fq] + iy Wyxx =Sp W,y;“z"h}x

2 (II-5)
vly = Au f;)()(\ = A13 f;a: = 5,, W,xx +S,3 N’#J --ZL N’J -f-RkV.
where the followlng parameters have been used:
A, = "&ﬁ'—z Su=Ephs )
" KN& Kﬂﬂ-k’
513 - )l;?b AII
AB = __kv_____z : : ‘ ? (II-6)
Kis Ko~ K Sw= T A
A, = Lo Siz= Fev Az y

22 - k’fs /(HR-KVz
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The middle surface strains can be expressed in terms of the

stress function by using equations (II-5) and the third
of (I-19). This leads to:

Ex=~Apfix + Ay flﬁ + g Wax = Szz"’c”
Au ‘ﬁxx ~ Ais ﬁﬂr -S, Wk *+ Sis W,J, (1I-7)

t9= %

The effect of the stiffener eccentricitles is represented
by the S parameters in the above expressions.
Differentiating equations (II-5) appropriately and
introducing the result into the remaining equilibrium
equation (II-3), yields:

‘[(Dus Fsb. O ) Wy xxxx "'Z(D *3 N +E?5S”))M“J}
+ (Dpg - '265/3)“:&”: ] - Sy f,xxxx + (S +Sp) ﬁxx;a y (11-8)

N f wx Wy = 2fixy Wry *frag Pixx
* ﬁ_l t = TN Wit = - L (Wpxee + Wryyte) )

Let us define the following additional parameters:

Dy = Dns = 55 St ‘

Dis = D, +#(FsSa +#sSu) } (11-9)
Dy, = Die = hosSi3

S,=%(5s * S )
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The dynamic equilibrium equation of the eccentrically

reinforced shell therefore becomes:

D,, N xxxx 20D, N;xxyy + Dzz No,ﬂyj )
+5u fuxxxx =250 frxrgy + n fwm

- f,xx W'JJ + Zf;x;”;xy = ﬁgyW/M

i fkﬁ = + T bt =L (Wast * Wggtt)= O |

¢ (1I-10)

3. Alternative Derivation of the Dynamic Equilibrium

Equation from Hamilton's Principle.

The purpose of this alternative derivation is twofold:
First, 1t offers a check on the previously derived
equation; second, it will yleld the boundary conditions
as a b&product.

Hamilton's principle can be stated in the form,
tz _
J/(T-Z[ +W) dt = 0 (II-11)
£, ‘

where T 1s the kinetic energy, U the strain energy, and
W the external work.
The kinetic energy can be split-up into:
m (s) R)
T-T™ . T¥ ., T (1I-12)

;

where the superscripted quantities refer to the total
kinetic energies of the monocoque shell, the stringers, and

the rings. Each of these can be expressed by:




L 2R 3 3

: 4
2 2 -
ﬁm)=2ip[/ ('”r,t + Vr,t *M:-)’é‘/f’/i' (1I-13)
00 -

where the subscript T agailn refers to the total quantity
at any height z.

L
7—{5)__ i f (7,2, ,.Vz. ,_”-2)44 dx  (11-18)
S 2 /O_s iz A 7ot T Vet TG 0S )
o “As

wherel%:%gf is the number of stringers and 1 refers to the

particular location. Similarly,
Nr 20

) 2 2 i
A '3 ﬂe; f Ure Ve + Wiy )dAp ‘(J (1I-15)
6 fp

where '7&'?4 is the number of rings.

The total tangential velocities are related to those of
the middle surface by:

Ure = Ut ~ 2 hxe
(II-16)

ie = Ve =244
In keeping with the assumption of negligible tangential
inertia, we can neglect the middle surface veloclity terms
u;t and Vot in the further development. As in the previous
derivation, the effects of stringers and rings are smeared-
out over thelr respective spacings. This means that the
summation is replaced by an integration. With these conside-

rations, the kinetic energy terms can be written as:
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L 4R

g0 / [E (e + Hyel #We ] dndy

= "/’[/51 ('th Hg;t),t/wé]/x(; (11;17)

L AR

ooAs

s / ﬁu;o (e e+ As W o dy

° %% ur

tpf j 1%+ %) +As iy 120

and similarly,
« AR

T 200 [ [[Uhe#SeAel Wit #4ge) 1] ety (31-19)

The total kinetlc energy of equation (II-12) then becomes,
y 3 3¢ oy T 2
s /ﬁf‘%“— P + L7y TS gy

or, on utilizing expressions (I-23) and (I-26),
L YR

T = .2'. { / [m w,: + 1Lz (ng;t +w,;¢)]dx/; f (I1I-20)

The first variation of T can be written as,

J/Tdt ]/ [m“‘t&% + I (”Mtg“’mt *N,;tg‘\‘*tyd«%/t (II-21)
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Integrating the first term by parts once, the second term

twice, and omitting some algebra, the following expression

results b L 2kR
J/Tdf //[ '”“"tt + L (W xxee *M”tt/]&vdxdiﬂ-
= 4 %2 ur
//[’” we I + Lo (Wee Sy m,tc)'u,,)]/ém}
004  UR

_{ /I,.[ [ Jn)/z, /( m&v)/d{]dé }

In Hamilton's principle, it is inherently assumed that Sw
vanlishes at tl and t2, so that, as a consequence, 5w,x and
Sw,y are also zero. The middle term of the above expression

can thus be deleted and there remains:
e L R

J/ Tdt = / { //[ T yee + i (e f-w,,,ftyé‘md;

t, 00y

/[L, M,&JN]/J« ‘/[1;,, N,xegn_]/d;jdi' (11-22)

The variation of the second term in equation (II-1l1l) can

be written as:
: h L 2R

_5/2,,“ /[/ T-Ne e, ~Ny 38, ~Myy Gy + e M
' T by By - By By + iy Ty

(11-23)
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The stress resultants are replaced by the stress function
relations (II-2). On using equations (I-14), (II-6), (II-7),

and (II-9), the moments can be expressed by:
My = =Syfix + Sy f:a,y -0y wix = (D + 756 5) Wiy
N‘y = 5/3 flxx ‘Szzflw "(Dy "‘ﬁbsll) Wax = Dzz W:J}

r (II-24)
Mx, = Dﬁss'wmy
HJ& = ‘DHGR “’Mq J

The variations of the strains are obtained from (I-17) as:
8E = Sux + Wx Omx
SW
Jf; = év,, * my gm, ? (11-25)
Slx; = Jz(,, + SZK * ‘V)X 6"0’ "'N,’thx

After substituting for the moments and strain variations,
and after considerable algebra, the first variation of the

strain energy finally becomes:
L L 2R

..J/Z(lé /{/ [—D,, W, xxxx =203 Wxxay ,”J;-Spﬁwx
# 25 frsay - Suingy +Foxtig~Zsg oy Fog Mo + 1% fodndy

/[fx, IN -fxx 6V *(fxy Wx ‘fxx w +~51sz; -Safxv +(0 flﬁs/)N,?
‘/‘Dzz ‘V,Jy’)gw (DMS+DH6£)WX’ JNX +(53fxx - nﬁa"(byfﬁsll)

(continued next page)
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+/[‘}[l¢73 du 'l-f)(a gV ‘/-(f,.x, h/,; —fyy Wx +5//]€XXX “nefixgy
{-(D‘, + % SZZ)”‘JJ 'I-D,, W, xxx #(D”“‘/-Dﬂsn)wx, )JN

( Sufoxx +Sm fugy -, 756 522 ) gy = -0, Mxx)g"’)(_]/dj} dt

(11-26)

In order to evaluate the first variation of the external
work, we must assume a specific loading case, Let us take

an eccentrically reinforced shell which 1s compressed axially
by an applied compressive load per unit length, NxA' It is
assumed that NxA 1s introduced at distance_f from the middle
surface. In addition, the external pressure p is acting on
the lateral surface.,

The work of the external forces then becomes:
TR L UMR

W = _/[N Vr/ ]/dj +//7om®{7 (11-27)

Following (II 11), the first variation of W becomes:

§ /th /t{ /2;;“ J(M-fﬂ,xy//] //Z;Rwalxq} }41,‘
/? //Z:JN/«{}/ /[MA S~ § W/ 4l

(11-28)

By combining (II-26), (II-28), and (II-22), we finally get:
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» /(T_Mm - [{ [ [0~ 202 gy -Gz

€& oo

-S,,ﬁxxxx Ly 25/1 ﬁxx” = Szzﬁ”” * ]‘:xx N,” "Zﬁx] N/K]
+f,” Wxx + 1—%’55 +p - M Wt '/'LT'(W,xxtt *quté)]J‘Wd/‘%
L

+ /[f; Ky Ju —f;xx é‘V + (){xz Wx ‘]fxx NJ "'\Szzﬁjj] ‘\5;3](;)()(1
+( 0, S )” MJ r Qz ”,;J, ]ﬁ ;tt ) &v (les ""Dnse)‘*',xi&x
+(5 foo=Safiey ~(0y # hoSulbiax =D Hyy) My /”

/[(‘f;, /VA'A Ju +fx’ 5V t (][XJ ,’ fi’ Wx f‘-s;,fw
-514 fx#l + (D + & éa)ny; »‘-D/, W, xxx +(Dm+0”cg)ﬂ,x;,
~Lw ,xfé) ow + ( Su frxx *5/9]{” (), + .sASn)N,”

= Du Wpex + Nfo)&”,xJ/dl} dt =

(I1-29)

The above equation consists of three distinct parts:

the first part contains a double integral with respect to

x and y; the second part is characterized by an integral with
respect to x; the third part features an integral with
respect to y.

The integrand of the second part must be evaluated at the
11m1ts,_y£0 and y=2nR. The geometric constraints (closure

conditions) of the cylindrical shell require however that
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Ui Vi W3 Wi and w,_must assume i1dentical values at y=0

y
and y=2nmR. The same applies to their first varlations.

Consequently, the integrand reduces to zero if the -closure

conditions are satisfled,

The integrand of the third part has to be evaluated at x=0
and x=L (boundary conditions). Since the ends of the cylindri-
cal shell can be mounted physically in various manners, the
first variations of u; v; w; and Wyys OT thelr multiplying
coefficients in parentheses, must assume specific values at
x=0 and x=L. Selecting these values such that each term, when
evaluated at x=0 and x=L, vanlishes, leads to the following

possible choices of boundary conditions:

_f,aa +N"A =0 or U=0 at x_—_.o;Lw
flay =0 or V=0 at X= O)‘/.

]C:Kg Wy 'f;” Wix +Su frxx
‘SIQ fﬂ(aa + (Dy +rg,5n)w,x”
+(%S ‘-DHGR) w'xa, -L‘ WKft m() or W=20 at X= 0; L }

-5 fo “Sw'ﬁa:j
=~ (Dy +¥5452) W yy
—D,,N,)\x +Nnj =0 or Wx=0 at x=OfLJ

(II-30)

In terms of the stress resultants (II-2) and moments (I-27),

(II-24), these boundary conditions can be stated equivalently

as:




Lo
Nx ‘_"NxA =0 or U=0 at X=0)‘L )
ny =0 or V=0 at x=ojl‘

M&,x - ma - (Hx,.v-ﬁ,x'a) ? (II-31)
+wa,x +nyw,a =0 or w=0 at x:O,'L

MX + NMf =0 or Ml’x: 0 at X:O/L y

Corresponding to the physical situation, an appropriate
selection of boundary condlitions from those listed above
will reduce the integrand of tﬁe second part of (II-29)
to zero. Satisfylng the closure and boundary conditions,
leaves therefore the first part of (II-29) equated to
zero. Since vais arbitrary, the integrand must vanish.
The latter reproduces the dynamic equilibrium equation
(II-10) obtained earlier.

The static counterparts of the boundary conditions (II-31)
are ldentical with those of reference ([35], where the
the static equivalent of equations (II-1) was derived

on the basis of the variation of the total potential

without the use of a stress function.
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L, The Fiéld Egﬁations.

Since equation (II-10) involves the stress function and
the radial displacement, we need another equation to solve
the problem. This additional relation is provided by the
compatibllity equation (I-18), which is repeated below:

L W,

- -— xx
Sy + iy = Mg Mgy = FE e
Differentlating the strain equations (II-7) and introducing
the result into (I-18), yields:

l
Au f,xxxx +2 (1’7, ‘AB) f. *xxgy + Az f,,ya,yf‘ S Wanen
A H '
+(Sin + Siy) Wxxyy = Sz Woasgy =Wy =WoxWyy - —é”— (1I-32)
Defining,
/

A, = T A (1I-33)

and using the last expression of (II-9), the above equation

becomes:

Ay foxmen + 24 fixegy + A frdany = Mox +457 Noxyy

2
- .Suw,”av; = Wiry + Wirx Hgy + %ﬁ‘ =0 (II-34)
This equation will be referred to as the compatibility

equation for the eccentrically reinforced cylindrical

shell.
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With equations (II-10) and (II-34), we have therefore
succeeded to arrive at a complete system of equations.
These are listed together below and will be called the

field equations of the eccentrically reinforced cylindri-
cal shell:

DII NIXXXX 4‘2 DIZ Mxxyy + Dll N,yy:: +S/[ ﬁxXM )

"2 S/zf:xxw +"Szz 'ﬁa&ya "‘f,xx N’W "'Zﬁ"JWMJ
“f’JJ Woxx - f,%x —p +FMUse ~ I (Wxeee *‘”@7#)‘ 0 ? (11-35)

A Fonsx + 280 fixxyy + Ao frypy = Sn Moxxx

2
+ZS/2 W,X)(Ja - .SaN, y —W”(: +NIKK MJJ +‘ﬂ,%x= 0}

5. Special Case Reductions.

If the gtiffeners are arranged symmetrically about the
monocoque shell middle surface, we can speak of a quasi-
orthotropic shell. 1Its strain-stress function relations are
readily avallable from (II-7) by setting the eccentricity
parameters S to zero. Similarly, the fleld equations for the
quasi-orthotropic shell are obtained from (II-35) by dropping
the terms containing the eccentricity parameters. The coeffi-
cients of the field equations will be denoted with a super-
seript (0) in this case.
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The reduction to the monocoque shell is also straight
forward. Table (II-1) below lists the coefficients of the
field equations as they reduce from the eccentrically

reinforced shell to the qualeOfthotropic, to the monocoque

shell.

Eccentricaliy D D D S S S
J Reinforced 11 . v 22 11 12 22
Shell . Defined by equations (II-9) and (JI-6)
() {0
Quasi-Ortho- le_ ng Dzi
tropic Shell 7 0 0 0
D+ %I“ D+£( s+§i_l9 D+§§_t&£ , ,
Monocoque D D D 0 0 0
Shell

Eccentrically A4 A, A,y | & _Eﬁ
Reinforced L == :
Shell ‘Defined by eqs. (II-6),(II-33),(I-23),(I-26) I
. (o) (o) o L _ ¥ I
tropic Shell 2} Le
\ FIMGY S

Monocoque A A / >
Exell Eh Eh Eh ph %‘

Table (II-1) : Coefficients of the Fleid Equations for the
Quasl-Orthotropic and Monocoque Shell,

On using the "orthotropic*" coefficients, the system of field
equations for the quasi-orthotropic cylindrical shell

is written as:




' Ly
(o) @ < (a)
D” Mxxxx*zolz*fm”"" Dzz N,”” - ﬁxx Wy "'zﬁat; an
— ) - v
",)[/:y Warx = %‘x P+ MWy "1;7, (Waxss +-Nyyté) =0 ? (11-36)

(o (o) @ 3
A frxxnx + 24, f.ﬂgg +An f:aw "”,x; Wt Wy y *%: /) }

The above equations correspond essentlially to those derived
by Thielemann (11]) for the true orthotropic eylindrieal
shell. His equations contain an initial imperfection dis-
pPlacement and were derived only for the static case.

The field equations for the monocoque cylindrical shell
represent the last reduction and become with the appropriate

coefficlents from Table (II-1):

Dvw ‘f;xx W,‘” +ff,xi N,XJ “f;;g“hx -ﬁR&‘ )

~p "‘P/’N/tt ‘%’-(W:xxtt *Mq;u) =0 T (11-37)
2

B VT = Wy Moo gy M =9

The static counterparts of equations (II-37) are widely known
in the literature; they may be found in Volmir's book caq) .
On reducing equations (II-37) to the static case and letting

Rwe00 , the well-knowm von Kérmafn-Marguerre large deflection

pPlate equations are obtained.
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CHAPTER III : THE FIELD EQUATIONS FOR INITIAL IMPERFECTIONS.

1. Modifications of the Strain-Displacement Relations,
Stress Resultants and Moments due to Initial Imperfections.
._______—-—-——-———-—-——-—————-—————-—-——-—-——IL———f—-f-

An initial imperfection displacement in the radial direction
Wwill be considered. Let us call the latter Wo) while

we denote by w, the total radial displacement so that the

net radial deflection w is given by w= Wy = Wy Unfortunately,
this somewhat cumbersome notation is necessary in connection
with the comma-differentiation symbolism,

The straln-displacement relations for initial imperfections
are taken from Volmir%9, given for the plate, and become

for the cylindrical shell:

2
Ex = u,x "'Z—I(W"),zx = N{O)'K) )
oty 485 |

ﬁy = 7‘., * Wx + My ”w,; = Wig W(o),J J

These relations reduce to those of (I~17) when the initial

lmperfection displacement is set to zero,

In analogy to equations (I-19), the stress resultants

and moments can be written as:
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N = Kos Lt * 3 (Wi = Hea)] + K Ly + 0y = Moy -4 =]
= Fab [ Woxx = Weoj,nf

Ny = K, [tn + (o= Wian)] + Ko [y + 2 (Mo =Wy~ Ml
~Fos [ W g = Weongy |

ny= N}x = ko [u/y +Yx + Mux %l] - Weoyx NWI]]

} 2
Mc = T [uu + £( Worx - Nto),x)] = Das [ Wo,xx =W xx = D, [y~ Wl gy/

My = ]:Kb [V': * zi(w':y - “/(:),;)‘7%(% ‘Mo))] = Dy [Wa/,xx ‘Mo),x{]
~ Dre [hu,gy ~ Wengy/
Mxy = DNGS [Ww,xy = N(a)'xa]

Myx = - Duse [“hl,x; - Wco),x,y]

(I11-2)

2. H&iifications of the Field Euations due to
Initial Imperfections.
Neglecting tangentlal inertla forces, the dynamlc equilibrium

equations can be expressed by:

Mg # Mgy =0

Ny,y +Neyx = O
1y Ky x ?(111-3)
Nx “ia,xx +2 Nx,y ”{u,x, + Ny Nlh,y,y + %{"‘ +M(,xx

Hlysixy +Hyigy = Hoyxy +10= Tl ee ~Lalbbycee* )
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where the so-called reduced loads involve the total dis-
placement, and where Wy) has been used in the inertia terms.
This is permissible since1wq1ﬁ constant with respect to time.
The first two equations of (III-3) can again be identically
satlsfled by a stress function.@(x,y,t), defined such that,

Nx é}”
Na = @ (III-4)

ny = -plxa

where Q has been used as the stress function symbol for the

case of initial imperfections in contrast to f of equatlions

(II-2).

The remaining dyngmic equilibrium equation from (III-3) can be

stated as:

- [ Dis ( Woy,xxax = Weaxmex) +2 D, ( Wai,xx gy = Weayxx gy )
f‘Dfm ( Wo,yyyy = Wzo):aavy)] + YSW Wo,xx ‘Z@X] Na.;,
*‘ﬁ XX Wo,gy + él—" + Fs (Uxux * wax‘N(o),xx + My, x. My, xxx
~ Weoy,x W(o),w) + 71;95( aga * N(,) vy - N(o),,yy *+ Wy,y W, g9

= Wiy Wy = % (W gy = Weohgy) +0 =M yee =L, (Mo * Hpgyte)

(III-5)

We can again eliminate the tangential displacement terms,

Solving the first two equations of (III-2) for v, and v,y,
Yields:




L8

Ux ==Aibxx # Ay, é}; + O (i e = Peopex) )

2
- S0 (Mo, g9 = Wongy) = 1 (Mox - N(o),xz) :
> (II1I-6)

Viy = Au Oyxx = AB 4’;gy -5, (Wlﬂ,xx - N/"h“)
. 2 2
+5/3 (W(m;y - N@l,yg) 'zi ("('hcy'“wl(,v) */% ("l} ) N@)

Differentiating these expressions appropriately and
introducing the result into equation (III-5), yields

the dynamic equilibrium equation:

D” [ W, xxxx = Weoxxxx ] +Z D/z[ W, xxyy = Weo), X*w]
Dy, [”",:fyya N ”%ma] + Oy fs;xm‘ =25, él”%‘ ?(111'-7)
S ¢I}y” - P Wogg * Zfﬁ"‘y N(”le B @7)' W xx

- % -P - ﬁww,te - I;;; [Nﬂ,xxtt *‘Mu,”tt] =0 y

The reduction to the case of zero initial imperfections
transforms equation (III-7) readily back to the first of
expressions (II-35).
The strain compatibility equation with initial imperfections
is taken from Volmir (49), for the plate, and is modified
for the cylindrical shell to become:

E. 2 2

g+ G = gy = Mg = oo Mgy = Moy |-
W N (III1-8)
F Meoyxx Nzo),” R ( Wy xx = Weop xx )

The strains can be expressed from equations (III-6) and

(III-1) as follows:




. u9
fx == A;; f,xx t+ Au, é;}] + \Su, (W(u,xx - N(%XX}‘ zz(“ﬁ,;f“a},&y)
5’ = 4',, @,xx = »413 @37 - Su (“ﬂ:ax" N(o),xx) "'SB (%’Iﬁ —N(,,),”)

I .
(X7=‘E @xy
(I1I-9)
Differentiating these strains appropriately and introducing
the result into equation (III-8), leads to the displace-

ment compatibility as the second of the field equations.

The modiflied fleld equations for the case of initial imper-

fections thus follow as:

D I [ M, xxxx = Nto),xxxx] +7 D/Z [ W, Xyd Nu),xxovy ] h
f DZZ [N([)"(yy’ = ‘J(o)lylyl] + 5)/ ¢;XXXX - 2‘5/2 ﬁxx”
+S:,2 é'n:# ~ ,xx W,y + 2 Pixy Wayxy - vt Ponxx
- % - P +M Wy - -Z;T,[M/,Xxu *Nu,ygté]= 0

? (I11I-10)
Ay ®onn + ZA,, é:xxyy + AZZ ﬁﬁli

=S [ Wo, raxx = Wlohm({/ +Z 5/2[ By xx4y = W‘W’W]

- Szz [ Mogygy = W“’)I?ﬁy] = N;,,g + Woyxx W gy

+ l'\l;,,x(7 = Wiy xx Wegjgy + é [ Muxx = N’Qm{] e 0 )

These field equations reduce readily to those of (II-35) when
W 1s set to zero. Using the coefficlents of Table (11-1),
the field equatibns for initial imperfections of the quasi-

orthotropic and monocoque shell are deduced at once.
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CHAPTER IV : DETERMINATION OF A STRESS FUNCTION

FROM AN ASSUMED RADIAL, DISPLACEMENT.

1. The Assumed Total and Initisl Imperfection Displacements.

An exact closed-form solution to the system of fourth order
nonlinear (second degree) partial differential equations
(III-10) is not known. We shall therefore seek an approximate
solution. One way of attempting a solution 1s to assume a
total and an initial radial displacement. Both of these are
then introduced into the compatibility equation of (III-10)
which results in a fourth order partial differential equation
for @ . If we can find an integral to the latter, we have

a sultable stress function which can be utilized in the
process of satisfying the dynamic equllibrium equation

of (III-10). This procedure will be given later.

In numerous static compression tests on monocoque
cylindrical shells, the "diamond" buckling pattern was usually
found in the postbuckling region. Occasionally, the "checker-
board" pattern has also been observed. There seems to be
a tendency of transition from the latter to the former.
However, in most tests, there is no uniform distribution
of a given pattern over the whole cylindrical surface, and
only a number of "bands" conform to the pattern. A pheno-
menological theory of the dynamlcs of transition from local

to postbuckling has been advanced by Evan-Iwanowski (54 .




For simplicity, let us assume a displacement pattern which
is distributed over the entire shell surface. The initial

and total radial displacements are assumed in the form,

Negy (%, 9) = fo Sin#x S/}?ﬂi * o SIN X 5,‘,,%;

(IV-1)
. . LI S v 2
Wiy (X, y,t/ = ﬁ({}smo(xsmﬁe«, o (t)stnaxsmn /%
whered and IB are defined by,
- mll
A= T
(IV-2)

p- 3

The assumed form of (IV-1) implies that the imperfection
displacement is in "spatial harmony" witﬁ the total dis-
placement.

The radial displacement pattern (IV-1), and some of its
variations, have been used extensively by Volmir (49].

The first term corresponds to the "checker board" pattern,
while the second term describes the "diamond" shape.

The time-dependent amplitudes fl(t) and gl(t) allow for

a transition between the two patterns.

The shell literature 1s at times confusing when it comes
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to symmetry considerations. Let us therefore define the con-

cepts that we shall use. We shall speak of two types of
symmetries. The first refers to rotational symmetry about

the cylinder axls, according to which a dlsplacement 1s

axisymmetric when it does not depend on y. The second refers




52

to symmetry with respect to the radial direction. According-
ly, the first term ("checker board" pattern) of (IV-1l) is
symmetric with respect to the radial direction, while the
second term ("dlamond" pattern) is asymmetric in this sense,
since the deflection is only positive inward.

The radial displacement assumption (IV-1) has been utilized
for simply-supported and clamped shells, although it satlsfies
neilther boundary condition exactly. Volmir (49) claims that

for shells, whose length 1s several times the mean radius,

the influence of the end restraints becomes negligible.

Let us conslider an eccentrically reinforced circular cylindri-
cal shell which i1s terminated by stiff flanges on both ends,
This case 1s often encountered in practical applications and
corresponds to clamped boundary conditions. From the possible
choice of boundary conditions for the radial dlisplacement
(II-31), modified for initial imperfections, we therefore

select:

Wy = Wey = O at x=0;L (1v-3)

]

Wox = Wx = 0 at x= 0L

The radial dilsplacement assumption (IV-1l) obviously satisfies
the first boundary condition of (IV-3) at both ends exactly.

For the second set of boundary conditions we calculate:
Wy,x = Wayx = & [(f,~fo) cosaxsimfly +4 (3, - jo)S/})Zxx
-1 (g,—;,,)sinZo(xco;Z/ZJ]

(IV-4)
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On account of the first term on the right hand side, the second
part of the clamped boundary conditions is not satisfied.
Taking however the average over the circumference at both

ends, we obtain:
R /7.4

e L A [oitytyo

XOL X—DL
(IV-5)

The second part of the clamped boundary conditions is there-

fore satisfled on the average.

2. The Stress Function Differential Equation.

The assumed radial displacement of the form (IV-1) is intro-
duced into the compatibility equation of (III-10), which,

after considerable algebra, results in:

Au Eroan + 2A Bixegy + A Buygyy = { (fifo) [#°S-24B552

/3?,5 + 2 % -« (figi - fg,}smo(xsm/%

+ 2 4B (fia0 - fogo) Sindaxsiny + 3 &°B* (o2 fj]S/m(xsm}%
#{ 1B fo) +24 B(5° ao} (2%, * ozl ;)fcoszpo(

P LR R -f) 108 ) - ¢ﬂszz@v-adjw2/?a
+§4(9 go)[o(‘(s" 24025, + B + 25 *ﬁz(i y‘,j}cosZwasZ/J
- £ w2 (5 "-g4') cos #atx ~ £<B(3, -go)cos Wy
. %‘/32(3,1-33) cos Yax cos 23y +-,’_-¢'\73"(g, ~gs")¢as 2x cos‘//S’J

(IV-6)




. Dividing the above equation by the leading coefficient,

leads to the following expression,

gwx +2a, + an §'73c77 = é, S;no(xslhng f-éﬂh%ﬁ/hﬂa
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+&y Sinax s/n}ﬁi + 4, 005 24x + ke cos2fy + £, cos2xx sy
B, cos tax + By cos By + Ry ostx osZBy + Ry, Coslixcos iy

(Iv-7)
where the following abbreviations have been used.
Az
all = A
]
" A

b g () [$S= 200Sa + £ - i Fo )]
b= 34 (fg - fogr)

?-—0(7;/?l (f;g, “fogo) = &1

bom o (B RD +4P 530)- -4 S+ 1) (g~g)f
b= (LB EF) il 32 4P Sule 30

&w——{#(g. <) (4°5 =265, + 'S #52)H B3

b= 5 (5-)

L

> (Iv-8)
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Q

&x = - %%1 (ﬁll' g:} = ‘&7
k’:fﬁf (?lz‘?°l)=_é7

24,
bom 5 (¢-30) =4

(IV-8)

3. The Derivation of a Stress Function.

Due to the nature of the trigonometric terms on the right
side of equation (IV-7), we can find an integral by assuming
a stress function that is made-up of these same trigonometric

terms. ¢ 1s therefore written in the form,
Px,gub) = A sinwx sinfy + Ay sin3kx sinBy + A3 Sthxx st 3y
#y COs24x + AsC0s2fy + Aq cOs2ax casdfBy + A, Cos ¥xx

+ g cos 4By + Ag COs X ca.sZ/SJ + Myo Cos 2%x cos 43y
= Q - (A
"Abx’g_ = A&gy%%
(IV-9)
where we have added the last two terms, following Volmir (49].
It 1s obvious that these two terms disappeér in the differenti-
ating process of (IV-7). Their physical meaning will be
discussed shortly. The A 's above are determined by equating
coefficlients of equal trigonometric terms when (IV-9) 1is
introduced into (IV=7). The somewhat tedious algebra

1s omitted here and only the result 1s glven below:




(RS 2 B ) o fp)
x“By +2 4 ﬂLA/z /3% Asa

A, = _i“lﬂt (£ i‘ﬁﬁo)
273/ 4%4, #/39( 2542 +f4 2

N 2B (hg -fo )
S TNy 5% g T

= KB o) A B g g0%) 2 O4 'Sy +5%)(30)
¥ 32 4%4,

N LB G By 335" (532
32ﬁ “faa

A= —HE-g)(s"S, - -2 1050 +57 ) -4 Bl gt)
¢ /6 (o( 4,, +2°<ﬁ2r4 +ﬁ /42.2/

L, .7-)

- _ &
7\7 12 4* Ay
_ &% -9,
MN=- g ﬁmjz
% - & 28%(2,*~ g0

71" 32 (/éf“A,, + 8«8 A, +3 %A )

2.ﬂl ,
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& (IV-10)

No® 32’(0\"3;1,, h Em‘/f‘/l,z +16 3¥4,,




Let us investigate whether the so-found stress function
satisfies the boundary conditlions of our problem. From

the possible boundary conditions listed in (II-30), we select
the following palr,

@’J] + NXA = 0 at X=O;L
éxyg 0 at X=OI’L

(IV-11)

where the stress function for initial imperfections, ? s has

replaced f in (II-30).

Evaluating @w from (IV-9), ylelds:

@, =" B [ A sinax sinfy + 2, $In 30X S/hﬁi + ?A,s/ho(xsh%;
+4 25 oS 2/83 ¥ l/')‘ €0S 2AX COSZﬂ] +/6 23 Cos%{
w4 Dy cos #xx c0s2By 16 N, €0S2AX 005 #/30«, " 7]

(IV=-12)

At Dboth ends, thls expression is written as:

¢, = (5[4 )5 cos2fsy + 42, o ancas By +16 Dy o4y
+ %L, cos $ax cosdfy + /6 A,o C0sZ4X 0S4y + __5]/

(IV-13)
When the above expression 1s evaluated at x=0 and x=L, it

still remains a function of y and cannot, therefore, be equal
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to a constant value, 'NxA’ as the boundary condition requires,

However, on taking the average value in the circumferential
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direction, we obtain:

2R
Y A )
2R / ﬁﬁé :‘Z'L = No,( (IV-14)
0 )

Consequently,ALx is the applied compressive load obtained
from averaging'fby over the circumference. The first part
of the boundary conditions (IV-11) is therefore satisfied

on the average.
iy
By = B[ A coswx cosfly # 3 o5 3ux cosfBy + 32 osux 0534

+ 42 sin2ax sin2f8 by +& )\9 Sin 4ax s/'nZ/(i +8 Ao S/};Zxxsz‘r;% ]

(Iv-15)

Calculating from (IV-9), results in:

At the ends, we have,

f:xy/ = & B[}, cosax cosfy +32, cosxx cosy +3A; casuxcas35y ]4 o

=0
it (IV-16)

which 1s obviously a function of y and nonvanishing.

By teking the circumferential average, however,

7’Flk_ ‘/f'xé'/ ‘{] =0 (IV-17)

we can satlisfy the second part of the boundary conditions

(IV-11) on the average.
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L, The Conditions of Closure.

Thus far, we have seen how the boundary conditions are satis-
fled by the assumed radial displacement (IV-1l) and the derived
stress function (IV-9).

In addition, the conditions of closure require that ww - W) b
W ox = Yoy oxt ww,,y - WRU’y‘ u; and v should assume the

same values at y=0 and y=2mR.

Let us rewrite (IV-1) in a different form:

Wy (%) = fo Sinax sinfy +§ Go = & go cos 2xx ~ go 0528,
-7 Fo €0s 2ux wSZﬂJ

(Iv-18)
Wy (%g8) = f; Sinx sinfy +% @1 =% 7, 0S 2% =5 G ©0s 2y
'HfjﬁCIKZKXCHSééy

The y-dependence of the above equation 1s trigonometric and

was chosen such that the fundamental wavelength corresponds

to the circumference. Thils characteriétic is not changed

in the differentiating process. Consequently, the conditions
of closure for the radial displacement and its first partial
derivatives with respect to x and y are therefore satisfled.

We can write more formally:
JR

LMoy ~Hoig] 4y = ©

2R
'J/QV*“7"“@%51745 =0

(IVv-19)
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2R
/[N(u,” "N(o),],y] dé’ =0 ]’ (IV-19)

In order to check the closure conditions on u, we must deter-

mine U, first. Integrating u, from (III-6), we can write,

U= f(}) 7"][ Al3ﬁf§ "‘Azz % "'5/9(%'/??'—”“’/”)

= 522 (Nn,” - N(q,;,y) 2 (“?ll,r = NM,{)]‘/f (1v-20)

where the dummy variable§ replaces x of the first expression
of (III-6) and ﬁ;,) is a yet undetermined function of y. Let

us stipulate that u, =0, so that, as a consequence, F =0,
x=0

u,y then becomes:

X
Uy = [FAsBry +habippy + S gy = Hagys)
" = S (Woggy = Miagyy) = (Mo Wy =M Yoy ] 4

(IV-21)

On substituting the derivatlives of the stress function and
the radial displacements, and after some algebra, we can

write the condition of closure as:
UIR

/ 7 dy //{m *As [ A, Sm«fwsﬂ, +9% Sm3o<fcos/3i
+ 32 sind }’ Cosjﬁy + 8 A cos 2§ SmZ,BJ + 32 /17 ¢0s ¥« f.S/nz/S’;

+ 16 A, cos 24§ s’”%’] +ﬁ Azz[“ A, Sm«fcas/?; - lsm3«fco$/3J
- 27 2; Sin%§ cos3fy + 8 As S/hz/};, +8 A cosZo(fsinZ/SJ

)

«Q
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© 64 g sintpy + & Mg cos ¥afsinZy + 64 &y cosZaf sin 18,/
£« BSy [-(i-Fo )sinaf By +2(g,~ge) os2 fsin2by]
+ 3P0 [({, -f) sin« fcos/}’; +2(3)- ojs/'nz/sé,
- 2(g. - g0) cos24f sindfly ] -*f [+ fo'jsmnfy sy

L (5 ) o528 sinfly cosly 4 ( g ) Sinfeossf sty
- (g fog) s eosafaastly + (fau-foginfasfonty
FE (32-3%) sin2fy =i (g gi) os efsindfy ~Elgrgnindfy casfy
riL (3,7-_ g} ) cos %t 5/'/72,83 sy | } Af dy

(IV-22)

When the integration is performed with respect to y, each
term vanishes on account of the trigonometric terms in y.
The condition of closure on u 1s therefore satisfied.

For v we can write:
MR

/t:, dy = 0 (IV-23)

Introducing Yoy from (III-6), yields:
%R

/[A,, ﬁxx - A/3 f; - S (“{/,xx N(o),xx) *‘5;3 (MI,JJ -N’Q’/Jyj

z(Ww,J N@,) + 7 (Mo - W@)]/y =0
(IV-24)

On account of the third expression of (IV-19), the fourth

term in the above equation can be deleted immediately.
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The stress function and radial displacement terms are
substituted from (IV-9) and (IV-18). After some algebra and

cancellation of those trigonometric terms that integrate out

to zero, one obtains:

21R -

/f—dlA” [4A, cosax + 16 A, cos4xx + é‘%] t s o

43S, (: - o) cos2xx -éz[ £5-L +E(9%-g2)
- ({7(,"_ £ +(g,z-goz)) (0S 24K + f(gzz-jolj cos M]
+ 2 [E(3-90) = & (3/~50) Cos Zxx_]}d; =0

(IV-25)

Satisfaction of the condition of closure therefore requires

that the above integrand 1s equal to zero, or:

- — 2 X 2
AI3 NDK - A” NOJ - g (ﬁl_ﬁ) _éﬁz(al '307‘)

2 z t
+ 4I—R (91-90) + Cos2ux [? (- +(gn'-go)) - ¥4 Ay Ay
2

- dzsﬂ Cg, -go)]f-COS %(X[—/é 9(2'4[[27 ‘3% (3,2-30227 =0
When A, and )\7 are inserted from (IV-10), it can readily

be shown that the coefficients of cos2«4x and coslxx

reduce to zero. Omitting the algebrailc detalls, we are

left with:

A Bl = o By - B (F-R)- 3 BTy 95) #i Grgo) = O

(IV-26)
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The condition of closure therefore relates M, and oy of the
stress function expression (IV-9),

Solving for ~7 yields:

~0¢7 414:'3 Now - 'g- (f*- f) 3_2'%' (5 ‘z7°) "4,4 R (3-3)

(IV-27)
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CHAPTER V : THE DYNAMIC EQUILIBRIUM OF AN ECCENTRICALLY

REINFORCED CYLINDRICAL SHELL SUBJECTED TO A

CONTROLLED RATE OF ENDSHORTENING.

1. Controlled Rate of Endshortening.

The endshortening of the cylindrical shell 1s defined by:
L

e-.--/md« (V-1)

/]

Uy is introduced from equation (III-6) so that one obtains:
L

€ = —_/{’421 ﬁi? - 413 éa“ +Sp (k{”l"x —N(o),xx)
y R -
o ‘521. (N(llqg - Nto},ag) - zL (%l/x = N(Oh’() } %)( (V-2)

Inserting the appropriate stress function and radial dis-

placement terms from (IV-9) and (IV-18), leads to,

e=- L{- B4ul A, SIn&X sinﬂj # Dy SINFKX SIN By +9 A, sinaxsin 38y
> +Y4As0s2py +16 ) 6.05 %J' + /Vo:e] o
+ &4, [, sinax sinfy + T b stn3ax sinfy + A3 sinwx sin3f
# oy 7 - &Sy (f~fo) sinaxsnfiy + %5 [(f- ﬁ/s:};o(is/nﬂi
~(g-g) 0528y ] - K [(F -f) # 3@ ~ge) - (FF)
+ ( g,l— 2:)) (0.52/8 gt 3( 7[, g, - fo ja )5/}70()( (OSIKJ *3(ﬁj/ ‘}C;J—Vﬂﬂx&n/%
- (][,jl ~foyo)$/;73o&x S/hjﬁ] - (fo?: _/Q?°) Stnax 5/‘”3%&
+4 (g,‘-gf) (o5 41/@1]} _.dx L ol (V-3)
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where the terms contalning cos 24x and cos 4«x have been de-
leted since they vanish in the integration.

Regrouping the integrand in terms of its y-dependent com-

ponents, there results:

e on [{-Aull o ly 4145454
+$/nﬁ; [ B Az, sinox -3 Ay Sim 3ax + K Ay A Sitix
#9843 Ag SN 38X = K254 (fi~fo) SImsx
B S (fefoine = 38 g ~fog) 58K

+$l'n%y [-9 BAus Sinax + o Ay3 Ay SINKX
E 8 (fugi-foge)Sin 380 + 5 (g —fog) Snx/
#cosBy[-3 <" (fg: = foge) Sinax ]
+ cosBy[- 4B A ds = BSa (1= 30+ SF F g5
+ cos 48y [—/6/42422 Ag -31;(},2-;:)]} dx

(V-4)

The bracket terms assoclated with cos Zﬁy and cos u4By
vanish when As and As are substituted from (IV-10).

In the particular case of even integers for m in o\=72—F ’
sin &x and sinddx integrate out to zero so that e is not
Y-dependent for a buckling pattern which divides the shell
length into an even number of axial half wavelengths.

Let us define a controlled rate of endshortening by,
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e = /V(T) dt (V-5)
0

where V(t) is the prescribed uniform velocity, - Uy ys at x=L,
taken positive in the negative x-direction and € is the

average endshortening, given by:
UR

= /
e=—: [ed (V-6)
2R d

[/}
Inserting e from (V-4) and performing both integrations

leads to:
& = L {Aull- Aally +5--Fo)
+3g) = [V (v-7)

Hoff [47) and his associates [48Jinvestigated the dynamic
buckling of columns in the form of (V-5) with a constant rate
of endshortening. Similarly, Coppa and Nash [ 51 ] |used
this approach in the investigation of monocoque shells under
impact, also utilizing a constant V.

In the present analysls the following rate of endshortening

will be considered:

Ve = by et* (v-8)

Such an approach keeps the advantages of the previous analysis
for *’=0, e.g. for small values of V a reduction to the
static case is possible, while for large values of Vo a

falr representation of impact buckling 1s possible in the
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sense of Coppa and Nash, neglecting wave propagation effects.
The incluslion of a finite value for J should improve the
"impact model™ in that the velocity at the end x=L usually
decreases with time. This model might have some merits also

in the consideration of axial impact on nonrigid surfaces.

Substituting Mw from (IV-27) and V(t) from (V-8) into

equation (V-7), and solving for MM, results in:

V(/ e—‘ﬂ: _1 A+ HAB 3 / AI3 {Z 23)
ox (L(Azz-A,,) 8 - [(7[ f)* (?l'io +4R Au (A - %,'3)

(V-9)

-~

Au

2. Application of the Bubnov-Galerkin Procedure.

In order to solve the problem of the eccentrically rein-
forced cylindrical shell subjected to a controlled rate

of endshortening of the form (V-8), we must find a solution
to the field equations (III-10). The second of these, the
compatibility equation, is satisfied by the stress function
(IV-9), which was derived from the assumed radial dis-
placements (IV-1). Ege to the controlled rate of endshorte-
ning(v-8), ALX and AA? of the stress function expression
(IV-9) must be expressed by (V-9) and (IV-27).

The first of the field equations remains to be satisfled.
Restricting ourselves to the problem of controlled rate

of endshortening of an eccentrically reinforced cylindrical




shell which 1s terminated at both ends by rigid flanges; we
can omit the pressure term in (III-10). The satisfactlon

of boundary and closure conditions has already been dlscussed.
The dynamic equilibrium equation will be satisfled in

the sense of Bubnov-Galerkin. For this purpose, let us
rewrite the first equation of (III-10) with p=0 in the

form:

H= Du [ W, xxxx. = ‘VIO),xw] +2D, [ W(u,xx‘;cy - W(o),xx” ]
+ Dzz[N(”,ﬁJy = ”(o),,yyyy] Sy f,xxxx =25, i x 4y
+ S @.&y‘” = IR N(U,Jy +Z Qs,xy W(u,xdu - @” Wy, xx

= %‘—x & 70 Wt ~ L7 [Wo et f“*/(/;,;ytt] =0

(V=10)
The Bubnov-Galerkin equations then become:
L 2R
/ / H smax S/}?/gi aém’] =0
00, (V-11)

[[wsinscsinify dedy = 0

The evaluation of these two integrals 1s extremely tedious
and lengthy. Some of the detalls are given in Appendix A.
The result can'be stated in a system of two second order

simultaneous differential equations of the third degree in




in fl and 81 the time-dependent amplitudes of the
"checkerboard" and "diamond" buckling patterns. This
system consists of the two equations (A-4) and (A-14) of

Appendlix A and is stated below:

2 2 3
477;'{" = B,f, +Bzg: :Bsf,g, J-B,,f,g, f-Bgf,'
+ Byt I-Tet + 5,

?(V-lz)
i}': G G +Gfr + ja + Cs«f *Cslcf'
/ /- e{ (t
+Q§l + G g5 7 3_{_ +G )

The coefficients B and C are defined in Appendix A.

3. Reduction to the Case of Dynamic Buckling of a Column.

In the case of a column the "diamond" pattern amplitude gl(t)
must be deleted so that only the first of the equations (V-12)
1s retained. The latter simplles further since the coupling
terms drop out. On writing the B's with a superscript (C),
indicating column, we are left with the following equation:

_ 75 é ) . B‘(C)f, L—_—_e_{_t ) 87(cj v-19)

a’f‘ ¢

The coefficlents B are obtained by reduction of expressions
(A-5) through (A-11) to the monocogue shell case; then letting
R+ ,v+» 0, and on using the area moment of inertia I and the

3
cross sectional area A of the column (A"h'IJ‘D*%l-I-EI), these
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coefficients become:

«© 7, tEL 7Y EAE )

B, —-%) PA + 2L %ﬁ

(C)___é E‘I.é
B‘;’;j T /e (z P ? (V-14)

2 £V

& -l of

() e
5" =)' £t )

The particular case of constant velocity of end approach is

obtained from (V-13) by taking the limlt as Jhbo. There results:

2 (c) .3 (c (c)
o - B « BE + 8 it +B, (v-15)
This equation coincides with that used by Hoff [47] for the
column. A comparison of coefficients reveals a slight discrepancy
in that Hoff has the factor 3/16 replaced by 1/4, which is not
surprising when one recalls our method of derivation and satis-
faction of boundary conditions (clamped). This difference is
minor, however, and affects primarlily B5(C2 at least for f, “'VZS/?
where 03=E§ is the radius of gyration of the column. Since

B,(C) multiplies with f]3_ , this slight difference becomes sig-

5
nificant only in the postbuckling region.

4. The Linearized System of Differential Equations
with Constant Coefficients,

Before plunging into numerical methods to integrate the system
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of equations (V-12) for a particular shell, i1t seems worth-
while to consider certaln simplifications of these equatlions.
Let us therefore contemplate the linearized constant coefficient

equivalent of (V-12) which is:

2
ngl’ =Bf +8g +6

2
_Z_t% =G +tGfi +G

- t (V=16)
/-e
7 +C¢

With the initial conditions,

f1(0)= fo
$:(0) =% (V-17)

i - 4! -
%(0)= Fito)= 0
and applying the Laplace transform method, the system becomes:

(s’--B,j fj(s) - 85 3‘,(5) = 574 ,_SQ;

=G f6) +(50) GO = S+ F *s?fsw o
The determinant of the homogeneous system becomes,
A= s'- (B +¢)s*+BC -5,G
whose roots can be written as:
S = 4 [(0+6)2(8C) |1+ 2% T
On defining,
e=+l/1+(‘;3£) (V-19)
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and noting from the definitions of B, and C2 , equations (A-6)

2
and (A-16), that B, and C, are related by,

¢, = -é-é- 52 (V-20)

we conclude that 6 is always a real number. Let us introduce:

w' =18 (1+6) +C (I-8)]

2 - (V-21)
w, ==£/B, (1-8) +C, (1+6)]
so that the determinant 4 can be written as:
4= (Szf-a),z)(s"* wf) (v-22)

Equations (V-19) and (V-21) provide some physical insight into

the system (V-16). Noting from (A-6) and (A-16) that B, and C,
vanish for zero imperfections, we conclude that 6 is only slightly
more than one, being one exactly for zero ilmperfections.

In the latter case, (V-21) becomes,

(0) ¢
w, 2 - -f% K
(V-23)
w2 . ¢®

where the superscript (0) has been added to indicate zero

imperfections. B{o) and C{o) are obtained from (A-5) and

(A-15) by deleting all terms with the factors f, and g_ .

They are: ‘ ‘s 2.,(%7'5 +ﬁt9 %;)2
(0) /I /¢ inl ¢ LR LY o
B ==, (80w + 200+ D) iy v 2 8B
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.C,(o— 7/6 (3*D) #2 /37'0/2 "‘3/6%:. ;A‘/—z)

(Vv-24)
lo (85, 2085 +B*SatBe)* 32 Sutam) [\
iz (4% hy +2698%42 +/3"Azz ) 1 A
_ 32@“522 ¢ 4& _
Ty, T AR iy (A 1)

(0)

and wz are the circular natural frequenciles in flexure

(0)
of the "checkerboard", respectively, the "diamond" buckling
amplitudes. The 1nfluence of the eccentric reinforcements on

the natural frequencies is seen by the terms of (V-24) that
contain the A's and S's . We also note that there is no coupling
of the system (V-16), since B, = 02'= 0 for zero imperfections.
From the previous remarks, we can expect only slight coupling
for nonvanishing imperfections. Both buckling pattern amplitudes
are thergfore almpst-independent of each other,

Looking back at the full nonlinear system (V-12), we conclude

that interactions between the two buckling patterns occurs

mainly due to the highly nonlinear coupling.

Solving the system (V-18) by Cramer's rule for the Laplace

transformed variables Fl(s) and'Ei(s), there results:

- Sl (8 *Bige-Gfs) \
ﬁ(s) (5*+ wY(st+wy) +_ (strwY(st+ w;)

B, Cq :"137(:r B: G
S(stre})(s*rwy) S @) (s rw)(s*w?) ‘Z (V-25)




7h

=~
3
S de S(C +Gfo -5, 8,6 -8,6
46 = maEray t T w,*)(i ma;i f SRR
ti Ck GS

TS (stp) (s*+07) (s+wy) (Sf(} (521w, )

Most of the terms of (V-25) have known inversions and can
be found in reference [55), for example; others are readlly

obtained by applying the convolution theorem. The inversion
of (V-25) becomes:

(Y= —;ﬁ'—l ( w,"casq,t -0, cosw,t) - QMLIBI%"{—CLIQ’(@@{ - taswit)
: -
Bz Ce BIC/ [ 1 +

ot (@ cosut - w,"cas i t)]

w,* w}
5, G J_e.ﬁt / we (y cosw,t /-UJ,S/md, el
i S %[ (K{w Y ty
cu,z( L coswyt f-wz.Smw,_ -/e( ] }
(“&.*I’/
C. o~ ) _
a (e) = Zo?sz (w,* coswt ~u, Cosuyt) - (C"Jl _‘f " Biij(casw,z‘ wsyt)
,,.é;cz-zb,q,[“ z(w;caswt w, cosagt)]
I I
23 C}_ /—-E;ayt ZP 60: 4ﬂ03“bt154®5%ﬂa&t'ﬁffi/’t
cozwz { (w, ,(/lj

_ W'y coswzt ot +U, Sinw,T ‘/e‘rt)]}
(' +¢%

;cr ¢ ~y cosw,t- w,s/mo,f@ ~ (coswltmzsmwzt L}
w [ Wiyt Wy # (

(V-26)
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- By collecting appropriate terms, these equations may be written
as:

Lle)= U coswt  + Uy oswt + Uysinwt  + U Smu,t

¢ Us el (¢ 4 Us
- - -t4., 1
g118) =(Vy +h €0 Geasut + ( acl Jeosat + (bt Jmat it foat
+ Vs e-‘ft a Vg
(V-27)
where the following abbreviations have been used:
fo w2 -8B, Bz,qo +C fo 0 (5:G - 55G) tB2Cq
U= G * B (i)
u B, 8,90 - Cﬁ 7(5 uh (5261 -5¢) _ IBng
w,2-w? Wt (wi-wl V3 A Y
Y. _B:G
W, (0, -, ) (‘*’lz ?"( 2)
U - =81l
T owy( w’z_w:)(w;. f;fv
— BZC / }"0:
Gty (a&-;}(w/) ( )(uuﬂ]
y, < S04 - ~Gofo * Bgt#(5G-8G)  _y5G
w "'wz Z(w’ wg}(wl }

__ _rG

“ (w!:z_ 8 :.z) (“)/z *[9
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VL,:: C? '/-Czﬁ /29 jowl 2(87C2‘Bg) 4/8,64

w*- Wi RN OV CRTY
‘ézz ! i T, . 2
(@ -wi)(wy +4%)
___ 6B Cz
37w, (w- wz)(w*+4?)
- Wy CY
. 2wp)(w, )
lév = 5 G 21/, .2 . .2
w, (w}-wy)(wz +4°)
WM ¢”bck
"“bj(“hf#')
V A - Ew; yd w,
’wz " @Eww? %) (@2~ w e} # )]
G / /
vz 22 40 ﬁ{ aa2+flJ7
B,c, - B¢, - 55
V= S22 e v (V-27)
Wt w,

The case of constant veloclty of endshortening ls of particular
interest. Then the above equations simplify somewhat by taking
the 1limit asJ’O. Since these equations were found useful in

checking out one of the numerical methods that will be discussed

later, they are also listed below:

L% o U %osunt 1 4 et v U biniait + U et # 40+

9%) < Y casut + % coswyt + U Wsimay b+ W sinat # UV WY

(V-28)
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- The superscripts (0) refer to J’ being zero. The coefficlients
are defined by:

Z{/O)__ foéd, -57 Bz}o f‘Cfo"Lwl(BzC? 876)
/ h 40 -N,_

0. B,+B;go Cfo fo W~z (864 -8:C)

7((01 - Ba Cp
3 C‘)lg(wlz"t’:)
ol &G
* wf(w,z-wf)
U B
(4 Wi
w/ Bch B, G
4 a), N‘
V(O} ’9040 —C" C'zﬂ +3’i‘ 7‘—!'(87(2 BC’)
40 - wz
V2(0)= G+ Cofo - :io o A0 -z (5,6-8G)
-wl - z.
9__ G (B tw)

(03 (w,?- kh.z)
Vq(")‘I= C3 (B +w, )
w;' (W)

V. €__ B C;
w¥wy?

Vw) B7 Cz 'B[ C’
¢ = 2, .%
W "We
(V-29)
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5. The Linearized Differential Equations for Very Small

Imgé;fections and Constant Rate of Endshortening.

As pointed out in the previous section, the linearized system
of equations (V-12) is almost decoupled. In this section,
complete decoupling is assumed with J being zero. Thls leads
to two independent linear second order differential equations

with varliable coefficients of the form:

dZ
A AR A o

,%_ Ca +Gat +Gt +G

In order to bring these equations into a more standardized form,

the following transformations are made:

fite) = ut) (v-31)
C7§T =‘((I +C7f)

Gi(t) = v(T)

The derivatives become:

dfr _ éa’

i“ A

d% _ 3‘?‘&

42 Z% ) (V-32)

"
]
)
~ Wi
Y
b -

!

¥
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-5 )

Making use of these transformations and the derivatives, the

equations (V-=30) can be written in the form:

%%f%éy + 2 UR) = (Q,

(V-33)
2
dv(t) « vv() = G * s
at
Use was made of the following abbreviations:
Q=22 )
¥

- G (V-34)
al" C7 ?

I A1 A
Q3 C,3 C;% )

The solutions to these differential equations can be shown

to be:

ue) = fild) = A3 [2,-TG /&(-omﬁ Bi(-3 (2, + T4 /At(OM b/
4 - B, -Foj&(a)do] » B ()22 478 /Ae(-e)a/ 3
VD)= fult)= @, + ALl ?)[a,—m; /Bc(ow/f&ﬁ/ﬁ?«*//@ﬂc(fﬂj
%< -Gk (0Tt /& (94s] # Bi(X) [24 +TQ /Ac(-e// o]

(V=-35)
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The Al and Bi functlions are so-called Airy functions. They are
related to the one-third order Bessel functlons.when the argumept
is negative, as in (V=35). The reader is referred to the book [56)
for further details. In arriving at (V-35), use was made of‘

the property that the Wronskian of the Alry functlions Al and

Bi equals l/n. The A's are determined from the initial conditions
such that,

A =T [ Bl2) -RBit2)] )
A= T [R A (-2) - RA (-2)]
A ~T[R Bi(-5)-R.Belz)]
A= T [£, A (0)-RAR)]

where the R's are given by,

? (V-36)

R = fo-TQ [Bi(a) /Mo)a/o Al (-2) /Bc(-ajloj W
R~ -TQ [Bit2) /Ac(e)la 4ifa) /34('9)19]
?(V-37)
Ry~ g0 - &; /‘@[&(t)ﬂcz-a)zo /46(7//5((0}(/]
B = T &, [Bitn) /M o~ Ac(r)/&(o)ala ] )

and where,

(v-38)
3
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Equations (V-30) provide a closed-form solution to the
differential equations (V-30), provided the Airy functions,
their derivatives and integrals can be evaluated. A tabulation
of such evaluations for an argument (negative) range from

zero to ten is given in reference (561, p.477. In the (negative)
argument range from ten to thirty, this reference lists certain
asymptotic formulas for calculating the Alry functions and
their derivativqs by using certain values from the tables.

In the same argument range, the integrals can be  evaluated

from asymptotic expansions given in the book (7]}, p.1l37.

For (negative) arguments larger than thirty, the following

Asmptotic expansions may be used (56] :

AL(n)~ 0,3987423 Z-é(cw./l.-fS/}?./L) )

4 (g) ~-03987¢23 ¢ % (sl ~sind)
e '

Bi ()~ 03989423 4 * (wsd-smdl)

Blc' (p) ~ 03987423 735 (tos /L +$/'n.4.) ? (V=39)

hecordow 2 - £E 5 (cast~sind)

02 _ '

] Bi-6)do ~ £ f%' y 0'75(cos./1. +sm/l.)
A=% 7% J

In the above equations 7 is the generic varlable and stands

for z or{T of the other expressions.
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In the (negative) argument range over thirty, the numerical
calculation of the solutions (V-35) becomes relatively simple,
using the above asymptotic expansions. From equations (V-31)
and (V-38), we can put an upper time limit on the validity
of these expanslions and write:

L 2,-30 _ 8, 30 )

h= B3 B BE

(3

N

7 (V-40)

N

=30 __¢ _30
é% G B G E;f' )
Recalling that B6 and C7 are proportional to the constant
veloclty of endshortening, Vo s these equations reflect the
fact that the asymptotic expansions can be employed longer
for smaller Vo .
These equations are useful in that they can give a comparison
between linear and nonlinear theory for the case of very small
imperfections and constant veloclty of end approach.
For the particular case of the shell, considered in the next
chapter, it turned out that the asymptotic expansions were valid
during a portion of the time needed for dynamic buckling.
In order to solve for f1 and 8, for the rest of the time, a
numerical evaluation becomes more complex. Thls effort was
abandoned, since it involves about as much as to solve the
full nonlinear system numerically.
A comparison of the first equation of (V-30) with (V=15)
shows agreement with Hoff's linearized column equation. Hoff

C47] solved this linearized equation numerically, using one-third
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order Bessel functions without taking advantage of asymptotic
expansions,

Reconsidering the full nonlinear system (V-12) and assuming
very small imperfections and constant rate of endshortening,
we could essentially divide the time history of dynamic
buckling into three distinct periods:

a) The initial period: A comparison of the order of magnitude

shows that all nonlinear terms, and also Béflt and C7g1t,

are small in regard to the other terms. A reduction to a system
of second order differential equations with constant coeffi-
cients 1s possible. On neglecting coupling, two separate
equations may be solved by the method outlined in Section 5,

setting C,=B,=0.

2 72
b) The intermedlate period: As time proceeds, the terms Béflt

and C7glt must be included, although the nonlinear terms may
still be negligible. This period is covered by the development
in this section. Until the end of the intermedlate period

the equations are practically uncoupled.

¢) The final period: The beginning of thls period is character-

ized by the onset of dynamic buckling with increasing fl and

gl so that the nonlinear terms must be retained and strong
nonlinear coupling occurs between "checkerboard" and "diamond"
shape buckling amplitudes.

Having gained adequate physical insight into the governing
equations (V-12), let us go on to the numerical solution of these

equations for a particular shell.
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CHAPTER VI : NUMERICAL SOLUTION OF THE DYNAMIC BUCKLING LOAD

FOR CARD'S STRINGER SHELL.

1. Card's Stringer Shell.

In order to base any numerical calculation on a realistic basis,
the stringer shells, labeled cylinder 1 and 2 in Card's report
(34), will be used. Card measured the axial static buckling

load and the pertinent data are shown in Table (VI-1l) below:

cn//Jf ALumiNuy | TYPE | STIFR | h L] R

DER

A | Loax_| Smx || 4 Hox
AlLoy  |Stirr |LOGAT| [ing  |lin| Ling |[in'] | Lkps] [lkséT |. |ling | (@)in]

1

2024-T7351| Inte-| Ext.[ 0.0283|38!9.55|3.69|112.6{30.5(6[(1.0| 800

gral

2024-T351| Inte-| Int.| 0.0277|38|9.55{3.72| 48.0[12.9(6]|1.0(|1875

gral

Table (VI-1) : Card's Stringer Shell Data from Reference (34].

A refers to the totél cross sectional area (stringer + monocoque

shell), P ox 1S the total load obtalned by multiplying o
by A; n is the number of clrcumferential 'dlamond buckles, which

corresponds to the definition used in this dissertation.

A sketch of the stringer cross sectional dimensions 1is given

in Figure (VI-1) below:




o
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)

Figﬁre (VI-ll: Stringer Cross Section Dimensions
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In the calculations of this report, the slight increase in

area due to the fillet radius on the cross section 1s neglec-

ted. It is assumed, furthermore, that h=0.0283 in for both

cylinders, 1 and 2. The necessary geometry and material input

data are collected in Table (VI-2) below:

v =L Ee Gs Gr P_ Ps /&
| (] ([ i’ | [ | (i’ | [Hseddn’] |[8sehn’)
0.3 |10.5x10%] o [4.038x10%| o |2.59x107%| 2.59x107%| o
Lin] O] | ling | [in] | i [inY] ('] [in]
0.0283 | 0.02926 | 0 |1.0 |1000% |2.216x10™" | o |7.242x10" O%#

Jk N ;-is ?& ) L - R

[in“] [in] [in] (in] [in7

+ 0,165 **x* | 0 38.0 9.55

Table (VI-2) :

Geometry and Material Input Parameters for

Numerical Calculations of Card's Shell.
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EeAr

* This number 1s used in the computer program to prevent kk= ¢
from becoming zero over zero and does not actually enter into
the calculatlons.

*%* Calculated on the basis of the theory of elasticlty solution
of twisting of a bar of rectangular cross section from
reference (58], p.278, assuming free warping.

*## + for Internal stiffeners, - for external stiffeners.

Since the data listed in Table (VI-2) are characteristic of
the particular geometry and material composition of the
eccentrically reinforced shell, they wlll be referred to

as geometry and material input parameters.

It will be shown in the next chapter that the theory of

the dynamlic buckling of the eccentrically reinforced shell
with its numerical method of solution can be applied success-
fully to the static case by assuming a small constant velocity
v, .

o]

2. The-Bunge-Kutta.Method of Integrating the Nonlinear

Coupled Differential Equations.

The dynamic buckling of a monocoque cylindrical shell was
investigated in reference [51]. A set of differential equations,
similar to (V-12), was derived. The report indicated that a
Runge-Kutta method was utilized in the numerical solution.

No details are given, however, on the type of Runge-Kutta

formula and the chosen step slze.
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It is convenient at this point to work with variables that are

standard in numerical work. Let us therefore use:

I
(*

(VI-1)

v AT X
" ]
W N

The nonlinear system of equations (V-12) can therefore be

written as:

‘?II

\

[}

F gt = By + B2 +By2 f-B,,(yaz #85‘73
+B‘y %ix + B,

II

2’ = Blxgt) = G2 +Gy +G21 +G Yt~ Coyle

G, 2t +C‘7£-jf/¢ *Q_l:;_-‘fx * Gy

The classical Runge-Kutta procedure is a fourth order method,

?(vx-z)

e.g. a Taylor serles expansion would agree with this method

up to and including the fourth order term. It is self-starting
in that no previous values of the function 1s required.

One of the serious drawbacks of the Runge-Kutta method is the
lack of simple means for estimating the error. Even if the trun-

cation error is small, a Runge-Kutta method may produce

extremely lnaccurate results under unfavorable conditions. Roundoff

or truncation errors may become magnified as the solution 1s
carrled out for larger and larger x, which is polnted out in

reference ([59), p.329.

Despite these disadvantages, the method was tried out on the
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strength that it worked apparently for the case of the monocoque
shell of reference [51].

Since F; and F, of (VI-2) do not contain any first derivatives
of y and z, we can make use of some specialized formula, given
in reference [60], p.359, for y''= f(x,y). Extending this for-

mula to a system of two simultaneous equatlions, we have:

£, = h ¥ (X} yn; 2) )
ézsh;,—(xn'/'é;yu»"z‘ﬁ]:. +3“,,'z~+-zél;+3é5)
k= WL (X +h] o #h e +2/l»€z;£,,+é£,', +E/lfz)
Ly=h [gn + § (4 +24)]

A#'=6-L (ﬁ,-l-‘h@;,-ﬁ@) &(VI-B)
b=h By (X} fm} 2n)

b= h F (% +hs gu +;z:,:, *2114,,-24.{:42:, +44)
(3=;) E(Xﬂf‘h;yﬁf'é]« +2/l‘¢)'21.+/1i‘,, *é[z}
d2=h [2, +}1(4+24)]

s2'= (b +44+6)

h refers here to the (constant) step size.

A computer program has been developed that calculates the B's
and C's for the geometry and material input parameters of

the particular shell under conslderation for selected values
of Vo’ £ go,(’, m and n., The first program was based
strictly on the above Runge-Kutta formulas and is not included

in this dissertation.
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3. The Application of the Runge-Kutta Method to Card's

Stringer Shell and 1lts Paradoxial Results.

This section discusses some results which were obtalned by
using the Runge-Kutta method. A critical review of these
results, based strictly on physical insight, will reveal thelr
paradoxlal nature. The reasoning will be backed-up by an
improved method, shown in a later section.

The geometry and material input parameters for Card‘'s shell,
Table(VI-z), are used. A constant rate of endshortening of

100 ips and initial imperfections of the order of half the
monocogue shell thickness are assumed (fo=go=0.014 in).
Corresponding to each pair of mode numbers, m and n, there re-
sults a pair of amplitude functions,fl=fl(t) and gl=g1(t),
after integrating the system (V-12). For each pair, m and n,
an axial load Nox=ﬁoxﬂt) can be calculated from (V-9).

Of the family of curves, ﬁox=ﬁox(m;n;t), the lowest maximum
will be deflined as the critical dynamic buckling load.

Figures (Vi-z) to (VI-4) depict results obtained by the Runge-
Kutta method with a step size of 10 microseconds. The 1attef
constitutes only a fraction of the natural perlod, correspon-
ding to the lowest natural frequency of the linearized problem.
In each Figure, the so-called aspect ratio of the buckle 1is

kept constant. The aspect ratlio 1s defined by:

W = _g- =(FL£) (2) | (VI-4)
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Pairs of m and n, corresponding to aspect ratios of roughly
0.8, 1.2, and 1.6, were chosen.

In considering these Figures, it must be remarked that the arrows
on the ends of the curves indicate a sharp drop of ﬁ;x to

a large negative value. This is physlcally not realizable,
since it implies that the ends of the shell pull apart from
each other, while they must approach each other by assumption.
It must be noted further that the maxima become lower and lower
with increasing m and n. Intuitively, however, one would associate
a "stiffer" configuration with higher modes.

The criterion for selecting the critical dynamic buckling load
obviously falls, since it is expected that the maxima will get
lower and lower with increasing mode numbers.

It is therefore apparent that the sharr drop-off of these
curves 1s due to instabllity of the Runge-Kutta method. It is
proposed to call this phenomenon somewhat facetlously "Runge-
Kutta Buckling”.

This conclusion is backed-up by Figure (VI-2#) which shows

the curve ﬁox=ﬁ°x(t) for m=n=12, calculated on the basis of

en lmproved method. Comparing it with the corresponding curve
of Figure (VI-2), the instability of the method becomes clear.
The Bunge-Kutta method was also tried for smail rates of end-
shortening which approach static buckling. The method became
unstable after a certaln time, even though the same small

step size of 10 microseconds was maintained,

A closed-~form solution, based on the system of equations of
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Figure (VI-2) Dynamic Buckling Loads of Card's Shell by the

Runge-Kutta Method, Int.Stiffened, Incl. Rot.Iner.
Data: ¥=0.8 ; V=100 1ps f=0 i £,=8,=0.014 1n
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Flgure (VI-3) : Dynamic Buckling Loads of Card's Shell by the
Runge-Kutta Method, Int.Stiff.,Incl.Rot.Iner.
Data: 4 =1.2 ; V=100 ips i =0 i £ =g =0.014 1in.
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Figure (VI-4) : Dynamic Buckling Loads of Card's Shell by the
Runge-~-Kutta Method, Int.Stiff.,Incl.Rot.Iner.
Data: 4=1.6 ; V_=100 ips P f =0 3 T, =8,=0.014 in.
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Flgure (VI-2#*): Dynamic Buckling Load of Card's Shell by the
Combined Method% Int.Stiff. Incl.Rot.Iner.
Data:¥ =0.8 ; V=100 ips P (=0 i £,=8,=0.014 in.

* See Section 4.
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Section 5 (Linear Differential Equations with Constant Coeffi-
cients) was compared with a Runge-Kutta method solution of the
same linearized problem. For Vo=0.01 ips, fo=g°=0.001 in, m=n=12
and J’=O, calculations were made every 10 microseconds, up to

one millisecond. Both results compared quite favorably.

The results of reference [51) for the monocoque cylindrical
shell, calculated on the basls of a Runge-Kutta method, are
only given for equal m=n. They exhibit the same trend that
the maxima of ﬁox decrease with increasing m=n. A criterion
for selecting the critical dynamlc buckling load is based

on the quantity j=(f1+gl)/h=_f (minit). On plotting f(t) for
various m=n values, it 1ls argued that the.f , corresponding

to the critical dynamic buckling load, is the one that departs
eariiest from the time-axlis and also assumes the maximum first.
Thé plots of the‘f(t) curves for various m=n show, however,
that the departure and the maximum value are atfained earlier
and earlier, as m=n increases. No definite conclusion can be
reached., It is therefore strongly suspected that "Runge-Kutta

Buckling" has not been recognized in the results of reference

051] .
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4, The Combined Runge-Kutta Predictor-Corrector Method.

A predictor-corrector method makes use of previously calculated
values of the function, medicts the function at the next step
ahead, uses thls information to correct it with an improved
value (iteration). This method is therefore not selfstarting,
but is ideal to be combined with the Runge-Kutta method.

This combination will henceforth be called simply the combined
method.

We can agaln take advantage of the fact that F, and F

1 2
do not contain the first derivatives of y and z. We select a

of (VI-2)

set of fourth order formulas, which Hamming, see reference ([61],
P.214, calls very attractive. Further detaills can be obtained

from this reference, since we only list these formulas:

2 /W 14 4
2 fuet = -3 + f‘;—é (n * v * o2)
62 ” » ’ (VI"S)
Z',,H = 22*-) = 24;-3 + 'g— (eﬂ * 274 * qu-z)

Yot
PREDICTORS

bl 4 N /4
aﬁ*l = 27” 'j”., '/‘72— (y.,"./ + /0;« '/‘#’v‘l}

2 » ” N (VI-6)
Zrs =22y = Ty f“% (241 + 102, *‘2«-/)

CORRECTORS

Formulas (VI-5) use information of the current point n and
reach back three steps to predict the value one step ahead.

That value is then used in conjunction with F. and F2 to cal-

1l
culate the second derivatives. As seen from (VI-6), these deri-
vatives are utilized in the corrector, which also uses infor-

mation of the current point, but reaches back only one step.
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The predictor-corrector method can therefore be started, once
the first four consecutive values are known. It 1s therefore
only logical to calculate the first four points by the Runge-
Kutta method and then carry on with the Predictor-Corrector
procedure. This is done with the computer program given in

Appendix B, where further comments are made.

5. Application of the Combined Method to Card's Shell.

The Figures of the following pages present the results of

a calculation of the dynamic buckling loads of Card's shell,
using the combined method. They are based on the data: V°=100 ips
( =0; fo=g0=0.014 in. The mode numbers are varled according to
the following scheme: for each fixed n (6;8;10), m is increased
in steps of 2, starting with 2 and ending with 10. The lowest
value of n was taken 6 since this corresponds to Card's staﬁic
test. Figures (VI-5) through (VI-7) present the results for

the internally reinforced shell. According to our criterion¥
for critical buckling, it is clear that the lowest maximum is
obtained for m=4 and n=6, the corresponding critical dynamic
buckling load being ﬁoxc=2456 1b/in. This amounts to about

three times the static buckling load measured by Card (See Table
(VI-1)). Corresponding to the critical dynamic buckling load,
the time histories of f, and g, are depicted in Figure (VI-8),
Similar results are given for the externally reinforced shell

in Figures (VI-9) through (VI-12). Notably, the critical dynamic
buckling load occurs now for m=4 and n=8 and amounts to

3123 1b/in.

*¥the critical dynamic buckling load 1s the lowest maximum of ﬁox(t)
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FPigure (VI-5) : Dynamic Buckling Loads of Card's Shell by the
Combined Method, Internally Stiffened, Inclu-
ding Rotatory Inertia.

Data: VO=100 ips ; y== 0 sec”
f0=go=0.014 in.

L. n=6 ;
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Figure (VI-6) : Dynamic Buckling Loads of Card's Shell by the
Combined Method, Internally Stiffened, Inclu-
ding Rotatory Inertia.

Data: Vo=100 ips ; *=O sec™t i n=8 ;
fo=go=0.014 in.
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figure (VI-7) : Dynamic Buckling Loads of Card's Shell by the
| Combined Method, Internally Stiffened, Inclu-
ding Rotatory Inertia.
Data: V=100 1ps ; y=0 sec™ ; n=10 ;
fo=go=0.014 in.
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ms4: n=6

—CRITICAL BUCKLING

| I |

1 2 3 TmiE t [msec]

Critical Buckling Amplitudes of Card's Shell
by the Combined Method, Internally Stiffened,
Including Rotatory Inertia.
Data: Vo=lOO ips ; y =0 sec”
fo=go=0.014 in.

1 i m=4 ; n=6 ;
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Figure (Y;-9)_? Dynamic Buckling Loads of Card's Shell by the
Combined Method, Externally Stiffened, Inclu-
ding Rotatory Inertia.
Data: Vo=100 ips ;J==O sec”

fo=go;0.014 in.

1 n=6 ;
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Plgure LVI-lO) : Dynamic Buckling Loads of Card's Shell by
the Combined Method, Externally Stiffened,
Including Rotatory Inertia.
Data: V_=100 ips ; J =0 sec”
f6=go=0.014 in.

l;n=8;
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Figure (VI-11) :

Dynamic Buckling Loads of Card's Shell by
the Combined Method, Externally Stiffened,
Including Botatory Inertia.

Data: V_=100 1ips ; J =0 sec-l ; n=10

fo=go=0.014 in,
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Figure (VI-12) : Critical Buckling Amplitudes of Card's Shell
\ by the ,Combined Method, Externally Stiffened,
Including Rotatory Inertia.
Data: V =100 ips ; X = 0 sec”
fo=g°=0.01’+ in.

1;m=llr;n=8;
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It can also be concluded that the dips of the Nox(t) curves
after the first maximum are small. The smallness of the dip
seems to be due to the reinforcements. This reasoning is based
on a comparison with static data of the monocoque shell. In

the latter, the buckling load is usually plotted versus unit
endshortening. Since the rate of endshortening i1s constant

for the curves of our Figures, the abscissa might as well be
taken as unit endshortening. Nonlinear static monocoque curves
rise only slowly after a considerable dip to the postbuckling
value and reach soon into the super-large deflection reglon.
Recalling analogous plate data, it must be concluded that the
stringer-stiffened shell has more of a plate-like behavior,

the transition being dependent on the stiffener-monocoque shell
configuration.

Considering the time histories of fl and gy of Figures (VI-8)
and (VI-12), it can be seen that theses amplitudes become
quite large after the time, when Nox has reached 1ts critical
value. All plots are therefore only carried out a small amount
over the critical time, since much further,even the large
deflection theory 1s no longer valid.

As a last remark, we observe that for large mode numbers, say
m>»6 and n>8, the curves Nox(t) no longer attain any maximum,
in sharp contrast to the "Runge-Kutta Buckling" of Section 3.
Our intultive physical insight, that lead to clear up the previous

paradoxial situatlion, is therefore confirmed by the calculations.
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6. Factors Affecting the Critical Dynamic Buckling

Load of Card's Stringer Shell.

It is quite clear that any extensive investigation of this
type requires a large amount of computer time. Within the
scope of thls dissertation and the available computer time,
it is therefore not possible to conslider a wide varliety of
parameter changes and thelr effect on the results.

A modest effort was made, however, to show the influence

of the followilng factors:

Rotatory Inertia

Magnitude of Constant Rate of Endshortening

Size of the Initial Imperfections

Direction of Initlal Imperfectlons

Time Constant of Exponentlally Decaying Rate of Endshortening

a) The Effect of Rotatory Inertia

The rotatory inertia affects the coefficients B and C since
ﬁi and ﬁé appear in the denominator of the definitions of
these coefficients. ﬁi is defined by eqution (A-3), while

ﬁz is given by (A-13). Both quatitlies are somewhat larger
than the smeared-out mass @, the increase being proportional

to Im and depending on the mode numbers m and n. Iﬁ 1s defined

by equation (I-26). In the particular case of Card's stringer
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shell, the effect of rotatory inertia is expected to be some-
what smaller, since the contribution of the rings to Iﬁ is
absent. Since the increase over m is proportional to (d5+Pz) Iz
large mode numbers are required to make this increase consl-
derable, Iﬁ belng small for a stringer-only shell. It was
shown in the last section that critical dynamic buckling
occurs for relatively small mode numbers (m=4 ; n=6;8),

Table (VI-3) below confirms these expectatlons.

INTERNALLY STIFF. EXTERNAL STIFE.

W.RI* | WORI*™ | mAeT* W.ORT**

" 1% Rore| 1" Noxime | /" Roxac | R s
(¢4/in] (@/in] [B/in] L%/in]
2 6 3834 3834 L4hol Lugl
b 6 2456 2449 4615 L612
6 6 3627 2623 L4885 4583
b 8 ~ - 3123 3115
6 8 2812 2801 3418 3412

* With Rotatory Inertia *# Without Rotatory Inertlia

Table (VI-3) : Effect of Rotatory Inertla on the Dynamic
Buckling of Card's Stringer Shell.
Data: V_=1loo ips;J=O l/sec;fo=g°=0.014 in

The critical dynamic buckling loads, which were determined
previously, are underligned in the above table.

In all cases, the effect of rotatory inertla ls at most
a fraction of one percent and can therefore be neglected

in future considerations of Card's stringer shell.
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b) The Effect of the Magnitude of Constant Rate of Endshortening

The magnitude of V° affects primarily the coefficlents B6 and
C7 which are proportional to V . Cg is also influenced through
Poisson-type interaction. It is expected that smaller Vo will
result in smaller critical dynamic buckling loads. With Vo
approaching the static compression testing machine range,
static buckling loads should be obtained. The latter will be
demonstrated in the next chapter.

In Table (VI-4) below, calculated results are presented for

Vo's of 100 ips and 50 ips.

INTERNALLY STIFF. EXTERNALLY STIFF.
m | N | Vo=lopips | WeS0jas | W=M0jas | Vo=50¢ps
1% Rlox g Pl | Filome | FBorax |
[ts/in] [&[in] [8in] [in]

2 é 3834 2285 Lol | 2990
4 6 2449# 1815 14612 4029
6 6 2623 2347 L4583 L4287
4 8 - 2129 3115 2549
6 8 2801 - 3412 3130

*underligned values are critical dynamic buckling loads

Table (VI-4) : Effect of vV, on Dynamic Buckling Load of
Card's Shell for Constant Rate of Endshortening.

Data: &/=0 s.:ec':L

: f°=g°=0.014 in;Rot.Iner. negl.

These results confirm our expectations.
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¢) Tne Effect of the Size of the Initial Imperfections.

It is expected that larger initial imperfectlions reduce the
critical dynamic buckling load more drastically than smaller
ones. In Table(VI-5) below, comparative data are presented
for dynamic buckling loads calculated on the basis of
f°=go=0.001 in and fo=go=0.014 in, for the same constant

rate of endshortening Vo=100 ips.

INTERNALLY STIFR EXTERNALLY STIFF
m n fo = g0 Lin] fo =ge Lin] 'ﬂ =50 ﬁ}_l] fo =50 Lin]
0.00/ 0.0i¢ 0.00/ 001
B Mo | Fohrmt | PR | 15 Moxmg |
_[&fin] [&]in] [&/in] [%fm]
L 6 4oy2 2449 * 7807 L4612
L 8 3391 - 5621 - 3115

* underligned values are critlical dynamic buckling loads

Table (VI-5) : Effect of the Initial Imperfection Size on
the Dynamic Buckling Loads of Card's Shell.
Data:J'=0 1/sec; V=100 ips.

It 1s seen therefore that the effect of the imperfection size
is extremely important.

It must be remarked in general that only the underligned values
were minimized according to our definition of critical

dynamic buckling load. The other values are Jjust calculated

by using the same mode numbers and determining the first

maximum of N
A Ox.




111

d) The Effect of the Direction: of the Initlal Imperfections.

Some interesting results may be obtained when the sign of fo
and g, is reversed. The writer realizes that the discussion

of this sectlon 1s probably only of academic interest since
existence of imperfection overshadows all other conslderations.
On an intuitive basls, a slgn change in fo alone should not
change anything, at least for even m's. The reason 1s that

the checkerboard pattern is made-up of sine waves which are
always full waves in both axial (even m's) and circumferential
directions. On an overall basls, there are as many inward

as outward half waves and the order (sign of fo) in which they
are taken should not matter,

The sign of g, does matter, however, since it 1s assoclated
with a sine-square term.

Experience has shown that diamond buckling has a preference
for inward bulging. If g, is taken negative (outward), and the
same tendency 1s assumed, it would appear that critical dynamic
buckling is somewhat delayed, since the shell has to overcome
the small artificial outward bulge first, before it can move
inward. Since the first term of the ﬁox(t) expression (V-9),
1s proportional to t for(r=0, it can bulld-up to a larger
value before the other terms start to reduce 1t.

Numerlecal calculations confirm these speculations and are
presented in Table (VI-6) below. It must be noted that these

buckling values apply for fo=to.014 in,
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Vo = 50(ps Vo = /00 cps
n | _go=—00i4in | Go=+00m | go=-00%m | go=tGOI¥in
INL* | EXE | WL | Exp | WNE | EXE | N

§=

EXL
(5% e | e | B L L™ /M
ra)in] | rapw | [ | Bin | W) | [ | [in] | @
6 | 2127 | 4231 | 1815%% 4029 |2678 | 5184 | 2449 | 4612
8 - 3115 | 2129 |[2549 | - 3663 - 3115

# INT, means internally stiffened shell.
EXT. means externally stiffened shell.
##* underligned values are critical dynamic buckling loads.

Table(VI-él : The Effect of the Direction of the Initial Imper-
fections on the Dynami¢ Buckling Loads of Card's
Stringer Shell.
Data: ’=0 1/sec ; £f.= 1 0.014 in.

The effect of negative g, is therefore to increase the dynamic
buckling loads.
Figures (VI-13) and (VI-14) present the time histories of

fl and gl. In order to see the delay due to negative 8o

Figure (VI-13) must be compared with Figure (VI-8) for the

same data but with positive 8q° The critical time, corresponding
to critical buckling, is marked on these curves.

In Figure (VI-14), fo=go=-0.01h in, and ﬁhggg is no difference
-curves

1
take-off in opposite directions, however, even though the same

in the g, -curves of Figures (VI-13) and (VI-14); the f

critical dynamic buckling load results, since fl and fo enter

as squared quantities into the expression (V-9) for ﬁox'
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, m=4; n=6
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'
Figure (VI-1 : Critical Buckling Amplitudes of Card's Shell

by the Combined Method, Internally Stiffened.

Effect of Opposlte Directlion of Initial Imper-

fections. (Compare with Figure (VI-8))

Data: V =100 1ips ; J’=O sec™l § m=l ; n=6 ;
fo=+0.014 in ; go=-0.01b in.
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Figure (VI-14)

: Critical Buckling Amplitudes of Card's Shell
by the Combined Method, Internally Stiffened.
Effect of Opposite Direction of Initial Imper-
fections. (Compare with Figure (VI-8))

Data: vﬁéloo ips ; Y =0 sec™t ; m=4 ; n=6 ;
f°=g°=-0.014 in,
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e) The Effect of the Time Constant of the Exponentially
Decaying Rate of Endshortening.

The time constant in this context 1s defined as the reclprocal
ole. In Table (VI-7) below, 1t is assumed that the time
constant 1s 2 msec., e€.g. Vb drops to 1/e of its value after
that time. This particular value is chosen since critical
buckling occurs approximately after sucth a duration, when
V°=1OO ips and constant rate of endshortening are assumed.
Calculations were made with V = 100 ips, y =500 1/sec;

the results are then compared with those obtained for constant

rate of endshortening, with V°=100 ips and Vo=50 ips.

INTERNALLY STJFFENED EATERNAWLY STIFEENED

m Vos/00gss | VorSolps | Voslpoips | s/lps | VosSpps | Vosltoges |
!= geose | = =So09z'|  pepsar 08l | yeSp0s
/ ﬁ' ‘Vtﬂggg /“-luu /ngnu /ﬁﬂhhﬂ~ f%awmu
(%] | L[] | [@fin] | [tin] | [sfin] | [#fin]

N 6 |24bo% | 1815 | 1793 | 4612 %029 | 3101

4 8 - 2129 2152 | 3115 2549 | 2324

# underligned values are critical dynamlc buckling loads
Table (VI-7) : The Effect of the Time Constant of the Expo-
nentially Decaying Rate of Endshortening
on the Dynamic Buckling Loads of Card's Shell.
Data: fo=go= 0.014 in.

For the internally stiffened shell a reduction of the critical
dynamic buckling load to roughly the values for VO=5o 1ps,"=0,
is obtained, while it is somewhat less for the externally

stiffened shell.
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CHAPTER VII : SOME COMMENTS ON THE STATIC BUCKLING PROBLEM OF

ECCENTRICALLY REINFORCED CYLINDRICAL SHELLS.

1. Prediction of the Static Buckling Load for Card's

Stringer Shell from the "Dynamic" Theory.

It is recalled that the boundary conditions of the problem
under consideration were not exactly satisfied. The clamped
boundary conditions were satisfled on the average over the
circumference.

In Card's tests, the stringer shell was ground flat at both
ends so that the ends were bearing against the flat plates

of head and base of the testing machine. It seems, therefore,
that this arrangement approaches clamped boundary conditions,
and a comparison of the calculated values from this theory

and Card's test results can be made.

The combined method was applied to predict the static buckling
load of Card's shell. Initial imperfections of f6=go=0.001 in
were assumed, accounting for careful machining of this shell.
Photographs in Card's report [34) show mode numbers of m=2,
and n=6, These mode numbers were selected and a constant rate
of endshortening Vo=0.1 1ps was chosen, maintalining the step
size of integration of 10 microseconds. It goes without saying
that this procedure is highly inefficiént as far as computer
time 1s concerned, but the purpose here was to demonstrate

the reduction of the theory to the statlic case. For this

reason only the internally reinforced shell was considered.
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The result is presented in Figure (VII-1). Notice, that the

general area around the dip has been expanded 1n scale.

Buckling occurs at t=0.519 sec. with a buckling load Noxc=833 1b/in.
This compares quite favorably with Card's tested value of

800 1b/in.

2. The Statlic Buckling Equations.

Let us consider the field equations (II-35). On reducing these

to the statlc case, we can write:

D// W, xxxx * Z D/z W,xx” -/-Dzz MIJJJ * Szzfmxxx -25, f,'xxo,;
+S22 7['&73:7 = ﬂxx Wag * Zﬁ’(o’ Wy ‘ﬁfih"“ ) ﬁ/éé -p =0

An fxox + 2 A f,xxg,y + 4, ﬁ;yy; =S W xix #8502 Wxxzy
2

= S Wyygy ‘%&; *Wxx Wyy * -’%Lx = O
(VII-1)

Let us assume,

f="1o tfe } (VII-2)

N= Np ~I~W3

where the quantities with subscript P refer to prebuckling-
those with B to buckling variables.

On introducing (VII-2) into (VII-1l), we can subtract out

the prebuckling terms, since they must satisfy the equilibrium
and compatibility equations sparately. The prebuckling equations

therefore become:
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Figure (VII-1) :

Prediction of the Statlc Buckling Load of Card's

Shell from the "Dynamic" Theory, Internally

Stiffened. - |

Datsa: V°=0.l ips ; X = 0 sec”
fo=g0= 0.001 in.

1 ; m=2 ; n=6 ;
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Diy Wexxx + 2 Dra We xxgy + Doz We gggy + I foxox =252 fxngy
+ S fogugy ~FBxx Wegy + 2 frny We,xy ~ gy Weax - fgﬂ -P=0

Al foxxx +2An fp,xxyy + '422 fg#”g - Sy We xuxx +2352 WeXxyy

2
=2 We,apsy = Mg +Wanx Wagy + 252 = 0
(VII-3)

The remainder ylelds the following equations:

Dy W, ex +2 D2 Weyengy * Daz W, ggy + 0 fonn = Z52fpgy *alingy
- feg5 Wexx + Lfnxy Wexg = fRxx Me,gy

- fo.py Wgxx * 2faxy Wary - Faxx Moy

- 7[8,” Wexx + 27[8,::; Wexy -fa,xx Wegy - 7%"—" = 0

A n 7[8, XRXX +2 Alzﬁ,xx” *'421 ﬁ, Yy ‘\5// ”&m ‘/‘25/2 W&Wy ‘~S;2 ‘V&aw;
+ Wexx Wa,yy ~ 2 Waxy Waxy +Hoyy Waax

W W, -"Vz Wa, xx = O
(VII-&)
Let us introduce:
Nxe =~ foss
Nyp == frxx (VII-5)
Nagp =~ fary

The stress resultants NxP and NyP correspond to compressive

stresses.




120

We assume that the prebuckling deformations, slopes and curva-
tures are small so that products of such quantities can be

neglected in (VII-4). In terms of the stress resultants (VII-5),

these  equatlions therefore become:

Du Wo,xxxx +2 Dra Wp xugy + Doy Mo, gyyy 50 fr, venx ‘Zsllf%*w *+Su2 12005y
-/-Nap Wp,aa ‘ZN"W’ WF,’"J +N)(ph/g;(x * Aé”—f = 0

Au fp,xm +Z Alzfp,xx;; Az fP, 99y -5, W xrxx
+2.5n We,xx 3y =S, We,gyay * ﬂz_x_x = O (VII-6)

Let us refer to (VII-6) as the linearized prebuckling equations.
On using the stress resultants (VII-5) in:(VII-4), there :

results:
D, Wg, xxxx +2 D, WB,MJ; + D, NB,;;J} S ﬁ,xxxx - Zslzﬁ,“,;;
+5227(81333? *+ pr NB)XX -ZNxap WB,XJ * NJP Ng’?’ - %XX

- 18,5y Waxx + 2fa,xy Wexy = f8x Wy ~ fa,z Werx
+ 2 fs,xa WP,:(J - fs,xx Np,a; = 0

Au foe + 2 Az £3,xx39 + Aza faangy = Su Vs o +2S2 Wa,xnpy
- 322 We\gagy + Wexx Wayy - 2 Mg, Xy ”B,)y *Weyy Waxx

2
+ Wexx Wpgy ~ Hgry + L’%&X =0 (VII-7)

Let us call (VII-7) the buckling equations. The prebuckling-

and buckling equations presented above cover the cases of
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buckling due to axlal compression, pressure and torsion, and
they are therefore quite general.

With the assumption of axisymmetric prebuckling (in absence

of torsion), the prebuckling equations can be simplified
considerably and solutions may be possible that satisfy

the given boundary qpnditionsbexactly. These prebuckling
solutions are then introduced into the nonlinear buckling
equations, whose solution must be attempted in some approxlimate
manner. Such solutions were carried out for the monocoque
cylindrical shell by Stein [23) , Fischer [21] ,. and Gorman [62].
Extensions of theses investigations to the eccentrically
reinforced cylindrical shell should therefore also be possible.
The equations derived in thils sectlon would provide the basis

for such analyses.

3. The Linear Classical Buckling Equations for the Eccentricailz

Reinforced Cylindrical Shell in Axlal Compression.

Neglecting the prebuckling deformation Wpy omitting the

torsion term with N , and assuming that NxP and NyP do not

xyP
depend on x and y, the fourth order derlvatlves of fp in the
prebuckling equations disappear on account of (VII-5).

The first equation of (VII-6) yields the simple result
NyP=pR and the second equation is identically satisfiled.

For the zero pressure case, we can therefore wrlte a linearized

version of the buckling equations (VII-7) in the form:
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D,, W, xxxx * ZDIZ W,xx(” * Dzz W:”JJ 7"‘S// f,xxxx

"ZS/zﬁxxaa ""'Szz_ /JJJJ + NDX

S

S, Wxxxx =25, Wyxxgy *+ 522 Wyaas ~Au f,xW
—ZAjzf;xXaa - Azzﬁaaay - %.M = O

(VII-8)

The subscript B has been droped for easier writing. Nox indi-

cates no dependency on x and y. The

second equation has

been slightly rearranged to bring out term similarities

between the above two equations.

Let us define the following linear operators:

¥ ¥
J@‘ D Ek + 20, 27‘5}‘ +0225§;

ook

¥ ¥
)e/z - S g 25, %@}z *Szz%,

wY

S
'

v ¢ y
- A/l'g_x‘f +24/z 2LJ2 +42z(‘)%,

* A/oxfj‘z—t" W

_L 2 ? (VII-9)
R 2

With the help of these operators, we can write (VII-8)

much simpler as:
£” W ¢ £nf =0
£y W - )ezzf =0

On eliminating first f and then w,
of equations results:
(‘en ézz ~ é/z&ﬂzz)w = 28”
('ell ell * gz ezz)f = %f

(VII-10)

the following dual palr

=0 (VII-11)
= 0




123

- The operator 1; is readily calculated from (VII-9) with

the result:

£ = (A Dy +57) Er + 2(Aba +4ry 25,5, )«m ;
+ [AuDyy +4A20 +a4n Dy +2(5,5:2 +23, )] W)} .
+2 (A0 #42 D32 25, u)'m} ¢ +(AnDy+S, )-3%
*5';; [(Al:Nox ‘f’)w *Z(A/z/vox * 2_&))%}_1

_2su)* ], O
+(42z/vox R )q;lp] a ,?1 ¢ (VII-12)

For completeness, if pressure and torsion are considered, this

operator becomes:
- (M0, 5} ) o * 2 (AnD 42 Du =25, 5/2)«»,(69,
, [A,, Dyy + %A Dy + Az Dy +2(55425; )]—%—v
+2 (A2 Dy #4120y - ZS,ZSZz)T‘ +(4a 22 +Szz)q :
+5-;[(A:,No, 2—5’—') -+ 2.( A Nox »L3  fy BR )D_JD}L
+ (Az Nox - ﬁ? +2An P'e)g v] Fdy
‘ZNO,V—Q-5 [A,L L +ZA,zm’ A“‘D,;]*‘D; (Azzp/e})b'l

(VIiI- 13)

On letting N___=p=0, the latter operator reduces readlly

oxy
to the former of (VII-12).
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Let us return to the case of axial compression only. The re-
duction of the operator (VII-12) to the monocoque shell case

1s readlly achieved by letting Dll¢-D124-D22~—D; Sli*'slé*'szz

*0 ; All-- A12 A22—>1/Eh. This operator then becomes:

fm)_ D %, 40 ! » 80 Dl +"LD')Z
2 T Eh '.)x8 Eh &% " Eh WYY " E) 'MOJ‘

. D Nox 0%, 2hhx V*
7] 'b,; w [ &hw T ER Wy Eh 1,«/ P
(VII-14)

With the usual operators for the monocoque case,
¢ _ 7 i
V7= oxe Z v)é, * 'aJv
LS ’
- 0 Pk )
v V Y f-({-,)x;.) 2+ 6 Y a“'+4’)x")f ')J?
(VII-15)

VZ

the equation 8W=O can be written in the more famlllar

form
Eh MW OV _
DVN + Rz W' + Nox v br 0 (VII-16)

which i1s known in this country as the linear Donnell equation
for axial.coﬁpression of the monocoque cylindrical shell.

The same equation is given by Volmir [49), p.249, for example.

In order to find the classical statlic buckling load for
the eccentrically reinforced cylindrical shell, we assume,
as in the monocogue case, a radial displacement of the

form:
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W= ZZ sin M s Zg (VII-17)

/

3
]
1

If w is a solution then each term m;n satisfies £w= 0,
where(i is given by (VII-12).Performing the appropriate
differentiations on w and introducing them into f;“=0 yields

the followlng expression:

(4, D, +S) (mfﬂ)z + 2 (A by +AuDy -25, 5/2) (ﬁl-'ﬁ/ 6(%’)1

F LA Dy + #4200 + AaDon +2.(5,5 #255)] (2012
# 2 (A D # Az Dug = 252 Se) () (2)° 4 (g sy #52) B
= (Auox = 282) (720)° -2 (A Mg + 252) (720) "12)°

- (- 22) (U G+ 2 (30" = 0

(VII-18)

Let us define the abbreviations:

0= J = ( (ﬁ) ('n
_SZ = /3 =(-R—) ,
M= Ay Dy + S,
/“Z: 22(A0<DQ *WQR[M ~£ZS”Sn)
M= A Dy + 4420, +An Dy +2(S1Ss; "‘25/;)
My = 2 (A Dp + ApDyy =2525:1)

Mg = Azz qu + Sg;

(VII-19)

Solving (VII-18) for N x and using the above abbreviations

leads to:
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L 0%, + 6 py +0 M +Opy
Nox 6[6 Ay +20 A1 H421] { 2 /a /“3 /«’ /Q:
+232-(03, 205/2‘/“.522)*' 3?1—; }

(ViI-20)

If the‘/u% are reduced to the case of the monocoque shell,

there results:

ik
- 40

/“z(w fg

M3 = & ? (VII-21)

/“v:: = "&‘__ﬁ

/=L J

The superscript (m) refers to the monocoque shell.

N,y then becomes for the monocoque shell:
A

- REh  (Drptieeiegot rho ] * 4
X oler+20+1] {Eh[ :Q_rt}

QR Eh : S?D(0+/) 6 Eh
" g(e+)* | ER 5, (041 +§‘?‘} 8 " RRYow)
(VII-22)
Letting,
} =%(0+/)z (VII-23)

N can be written as:

oxX
Nox = Dt + %}—’ (VII-24)
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As it is recalled, the critical buckling load is then obtained
by treating f as a continuous variable and seeking the

minimum of Nox as follows:

AN,
d}ox < D- %ﬁ) }L,, = 0 (VII-25)
Solving for f and introducing the result into (VII-24), yields
the critical static buckling load of the monocoque cylindrical
shell:

-2 - & -
Noxc =R DEh W (VII-26)

Thus a reduction to the monocoque cylindrical shell checks
out. The last few steps follow the treatment of the monocoque
cylindrical shell given by Volmir [49])and are only listed
here as a means of comparing it with the eccentrically
reinforced cylindrical shell. It is well to remember that the
mode numbers m and n are undetermined and do not appear in

the critical load expression.

Let us return to the eccentrically reinforced cylindrical
shell and conslider the expression for Nox (VII-20).

A set of positive integer pairs m and n (@ and 82 ) corresponds
to a set of Nox values. The smallest element in the Nox-set

1s the critical static buckling load.

A minimization of the Nox expression 1s not as easily achieved
as in the case of the monocoque shell. Instead of trying to

arrive at a closed-form solution for N it seems more straight-

oxC?
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forward to write a relatively simple computer program whilch
accepts all geometry and material input parameters, calculates
Nox according to (VII-20) for a whole range of pairs m and n,

the lowest such value being the critical static buckling load.

It must be kept in mind that the influence of boundary conditions

has been néglected in this treatment.

L. Determination of the Classical Static Buckling

Load for Card's Stringer Shell.

A separate computer program that executes the task prescribed
above 1s not included in this dissertation, since it 1is

relatively easy written from the program glven in Appendix B,

where all the parameters appearing in the/u expressions of (VII-19)
are already avallable.

Table(VII-1) below presents the results of such calculations,
obtalned for Card's shell, internally and externally stiffened.

Of the many calculated values of Nox s only a few of

the lowest values are given.

m - Nox 2 NG STHE Nox * EXTSIIFE ) o
[iin] [8in] - -
1 5 706 1176 1.67 0.1579
1 6 800 1138 1.42 0.1316
2 6 849 1928 2.27 0.2632
2 7 755 1610 2.14 0.2256

Table (VII-1) : Classical Static Buckling Loads for Card's Shell.
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The quantity'q in the table wlll be discussed in more detall
in the next section.? is defined as the ratio of the buckling
load of the externally reinforced shell to that of the inter-

nally stiffened cylinder:

= Nox oxr (VII-27)
A&xINF

7 might be appropriately called the stiffener location effective-
ness, since it gives a measure of the effectiveness of putting

the stiffeners externally.

Comparing the data of the table with Card's measured results,
one finds good agreement for the mode numbers m=2 and n=6.
Following the established criterion, however, we have to pick
the lowest values, which occur for m=1 and n=5. These values
are on the low side, particularly low for the externally stiffened
shell, where it doesn't matter much whether one plicks the

"true low" for m=1 and n=6, or selects m=l and n=5, It is
apparently the mode number m that affects the buckling load

for the externally stiffened Card shell in a drastic way.

We might therefore conclude, that the classical static analysils
provides good results in connection with some experimental
knowledge about the mode numbers, partlcularly m.

In the case of the monocoque cylindrical shell it has been
shown ([21] that clamping of the ends somewhat lncreases the
buckling load, the increase being more pronounced for shorter

shells. The radial displacement assumption (VII-7), on which
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the classical theory 1s based, corresponds to the simply-suppor-~
ted boundary conditions. The classical theory would therefore
inherently predict somewhat lower buckling loads than might

be expected with a corresponding theory that takes clamped
boundary conditions into account.

The calculated data therefore suggest that clamping seems to
play an even more important role in the case of the eccentrically
reinforced cylindrical shell. This 1s intuitively not surpri-
sing,since the stringers might be looked upon as an array of

clamped columns.

5. The Effect of the Mode Numbers on the Stiffener

Location Effectiveness.

The effect of the stlffener eccentricities on Nox is seen
clearly from equation (VII-20). The term in parentheses,con-
taining the S's, 1s the important one. The expression for
Nox EXT. is the same as (VII-20), except for a sign change
in the S quantities. Assuming the same mode numbers for the
internally and the externally stiffened cylindrical shell,

the stiffener location effectiveness can be written in the form:

9 o'y + e/fz £ Js 8 Mu Hiis# Q!‘t 2 5(6°S,-265, +5x:)
8%, + Opy + 0K +a/ue e + S + 28 (65 -2650 +52)
(VII28)

It must be noted that the eccentricity parameters S must be

taken positive for the development in this sectlion, since
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the minus sign for external stiffening is already 1hcorporated
into the above expression.

Let us introduce the abbreviation,

2 6 s
P =- KQ' (6 ;SL-ZZG'SL! +S22) ’ (VII-29)
0//9;*’57“11‘6&A§ + eﬂbIOA&'ng%éi

so that the stiffener location effectiveness can be written as:

) = q+p | (VII-30)
1 -'fh
For the case of a "stringer-only" cylindrical shell, py can
be simplified somewhat. Writing it as Pis for this particular

case and expressing it in terms of n and J s 1t can be shown

to be:
f%S" 2/?4,#\50 (79'_‘Jﬁ) .
R Ty,

(VII-31)

The Poisson ratio appears since 2 Slz/slla-v in the case of

a stringer-only shell.

It is interesting to observe that plS becomes negative for

aspect ratios 1)>'-L;7 (>1.83 for v=0.3), so that the stiffener
location effectiveness becomes less than one by (VII-30).

It 1is therefore theoretically possible that internally reinforced
stringer shells may yleld higher buckling loads than theilr
externally stiffened counterparts, if the buckling aspect

ratio exceeds a certain limit,
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Recalling the physical meaning of'J =b/a, this would imply

that the buckles would have to stretch out considerably in the
circumferential direction, as compared with the axial direction.
On the other hand, a particular shell is expected to show

an optimum stiffener location effectiveness for a certain

palr of mode numbers. Figure (VII-2) presents a graphical
optimization chart for Card's shell. 2 1s plotted versus 4’,'
with n as a parameter. The graph is arranged such that points
on the Qaz(';’) curves can be located which correspond to inte-
ger values of m and n. This was done simply by plotting
fm=rn(fLé—) 1’ y OT m=m(i,),i in the same dlagram with common
J—axis, and labelling the stralght lines wlth lts correspon-
ding n-values.

As an illustration, let us see whether we can get into the

peak region with some reasonable pair m; n. Selecting for
example m=3 on the ordinate axis (See Figure), we move hori-
zontally over until we intersect the ray n=7, where the latter
1s chosen since 1its curve y:QﬁVexhibits the highest peak;

we then move vertlically to intersect the 7-curve for n=7.

The resulting stiffener location effectiveness 1s therefore
around 2.5, which 1s about as much, as can be obtained.

Figure (VII-2) also exhlbits the sensitivity of Nox EXT
to changes in mode numbers. In the peak region, Nox EXT
will increase for increasing n up to n=7, and then decrease

again. Thls peak region is in the range of 0.24#4.0.5.
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Figure. (VII-2) : Stiffener Location Effectiveness Optimlization
Chart for Card's Shell.
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CHAPTER VIII : SUMMARY, CONCLUSIONS AND FUTURE WORK.

1. Summary.

Chapters I and II provide the theoretical basis for the dynamic
treatment of an eccentrically reinforced shallow cylindrical
shell with closely spaced stiffeners and rings. This baslis 1s
provided by a new set of field equations which are shown to
reduce to known equations in the literature,

Chapter III extends the field equations to include initilal
imperfections.

In Chapter IV, a radial displacement assumption is made on the
basis of expected buckling pattern and initial imperfections
are assumed in "spatial harmony" with the total displacements,
A stress function 1s derived which satisfies the compatibllity
equation for the assumed radial displacements.

In Chapter V, the problem of a clamped eccentrically reinforced
cylindrical shell 1s taken up, where the dynamic axial load
results from some prescribed rate of endshortening. The

dynamic equilibrium equations are belng satisfied in the
sense of Bubnov-Galerkin which results in a system of two non-
linear second-order differentlial equations in the buckling
pattern amplitudes. These important equations are then discussed
in great detail. The reduction to the case of dynamic buckling
of a column is shown. The chapter ends with a description of
three distinct periods in the range of these equations, during
which some physical insight may be obtalned from certain

simplifications.
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In Chapter VI, the speciflc case of Card's stringer shell 1s
treated on a numerical basis. Results based on the Runge-Kutta
method are shown to be contrary to physical interpretations
and "apparent" dynamic buckling occurs due to instabllity of
the Runge-Kutta method. A combined Runge-Kutta Predictor-Co-
rector method leads to dynamic buckling loads which are in
agreement with intuitive physical expectations. The remaining
portion of this chapter is devoted to a discussion of the
influence of various factors on the critical dynamic buckling
load, namely rotatory inertia, the magnitude of the constant
rate of endshortening, the slze of the initial imperfections,
the direction of the i1nitial imperfections and the time constant
of the exponentially decaying rate of endshortening.
Chapter VII is concerned with statlc buckling in contradistinction
to the other chapters and has been added mainly to give a
more complete treatment of the eccentrlically reinforced
circular cylindrical shell. It is shown that Card's static
test buckling load for the internally reinforced shell 1is
theoretically predicted quite closely by a "static" rate of
endshortening with initial imperfections of the order of
nanufacturing tolerances. Static buckling equations are derived
from the fleld equations and a separation into prebuckling and
buckling is made. A linear classlc Donnell-type equatlion 1s
derived; and classical buckling loads for Card's shell are
compared with test results. The effect of the mode numbers 1is
discussed and the concept of stiffener locatlion effectiveness

ls explored in detail.
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2. Conclusions.

Since no closed-form solution appears to be possible for the

dynamic stablillity of an eccentridally reinforced cylindrical

shell, conclusions must be based on relatively few numerical
results for some specific shell,

- On the basis of available data for Card's stringer shell,
we may conclude that rotatory inertia can be neglected in
determining the critical dynamic buckling load. For other,
cases 1t seems advisable to include it in the first numeri-
cal calculations.

- As expected, the magnitude of Vo for constant rate of end-
shortening plays an important role. Magnifications of the
static buckling loads of the order of two and three were
obtained for the internally reinforced shell for V0=5O ips
and for Vo=100 ips, as compared with Card's static test
results. These magnifications are considerably less for the
externally stiffened shell, the reason being, that the cri-
tical dynamic buckling load is assoclated with different
mode numbers for that shell as compared with the internally
relnforced one. Card's static tests gave the same mode numbers
for both shells, If the same mode numbers are taken for a
basis of comparison from Table (VI-4), the range of these
magnifications 1s similar to the one for the internally
relnforced shell.

- The size of the imperfection amplitudes affects the critical

dynamic buckling load drastically, as evidenced from Table (VI-4),
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Starting with values of reasonable manufacturing tolerance
(0.001 in), it is seen that an increase to approximately

half the monocoque shell thickness (0.014 in) reduces the
buckling loads by a factor of 1.6-1.8 for the same V. =100 1ips.
It i1s sometimes argued that imperfections are not as important
in reinforced cylindrical shells, since there is more "smeared-
out" thickness avallable so that manufacturing tolerances
become a smaller percentage than for thin monocoque shells.

If the middle-surface amplitudes of the initial imperfections
are of the sizes indicated, then such drastic reductions are
possible. Whether these magnitudes of the imperfections are
realistic,or not, depends on the method of manufacturing

and assembly.

The effect of the direction of the initial imperfections

seems to be more of academic interest since imperfections
should be eliminated as well as possible. If they do occur,
one has ordinarily no control over their directions anyway.
The effect of increasing the critical dynamic buckling load
by a negative g, is connected with the somewhat artificial
assumption that the initial imperfections are in "spatial
harmony" with the total displacements.

The effect of an exponentially decaying rate of endshortening
is to reduce the critical dynamic buckling load, as expected.
The amount of reduction depends on the time constant l/J R

In the case of Card's shell, a time constant was selected

of the order of the time i1t takes to reach buckling with

a constant rate of endshortening Vo=100 ips. For the inter-
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nally stiffened shell a reduction occurs to roughly the

values obtalned from assuming constant rate of endshortening
Vo=50 ips, while it is somewhat more drastic for the externally
stiffened shell.

- The theory of dynamic buckling yields a static buckling load
for Card's internally stiffened shell which is in close
agreement with the experimental value when "static" values
for Vo and initial imperfections of the order of manufactu-
ring tolerahces are used,

- Within the scope of the classical static theory and the "stiffener"
assumptlion of equal mode numbers, it is shown that maximum
stiffener location effectiveness for Card's shell lies within
the aspect ratio range of 0.34»’4 0.5; the best possible

value (7 = 2.52) occurs for the mode numbers m=3 and n=7.

3. Future Work.

A complex problem like the dynamic stability of eccentrically
reinforced cylindrical shells offers a challenge to many approa-
ches and for each solution, there will be an improved version:
Extensions and improvements of the present work may be classi-~

fied into:

- Improvements of the present solution of the same problem

- Extension of the problem to include other loading conditions.,

- Extension of the problem to include other reinforcement
configurations.

- Experimental work.
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The present solution could possibly be lmproved in varlous
aspects. A more realistic representation of the lmpact problem
would have to include effects due to wave propagation and the
elastlic response should be extended into the plastic range.
Within the scope of the present solution, the initial imperfection
displacement assumption should be made more realistic. It would
be desirable to have radial displacement assumptions which not
only describe a physical buckling pattern, but also satisfy

the given boundary conditions exactly. In addition to the present
free parameters fl and 81 there 1s a need for additional pa-
rameters. * and P should be made to be free parameters also.
Then the mode numbers would become time-dependent in the ana-
lysis. It is of course obvious that any of these suggestions
add considerable complexity to an already lengthy development.
Before plunging into such improvements of the present approach,
i1t is suggested to check for "passage"™ of the maln bottle necks:
Is it possible to find an integral for the stress function from
the compatibility equgtion ? Does the assumed radial displace-
ment offer advantages in evaluating the Galerkin integrals, such
as orthogonality relations? What kind of nonlinear coupled
differential equation system 1s to be expected in the selected
free parameters; and can 1t be tackled within the state of the

art of numerical methods ?

The scope of the present work 1s restricted to axial loads re-
sulting from a prescribed rate of endshortening. There are,
of course, many other loading possibilities, including simul-

taneous interaction of various spatial load distributions.
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Generally speaklng, we might look at the ghell contour surfaces
(lateral surfaces and faces) as a closed system which 1s acted
upon by external disturbances. The boundary of this system

i1s subjected to certain categories of disturbances whigh we
choose to classify in the manner shown in Figure (VIII-1).

The reaction of the internal shell system is then the

response (deflection, strain, stress). Extensions of the
present work to other loading situations 1s therefore possible

in many ways.
The present analysls 1s limited to closely spaced stiffeners

of an orthogonal array parallel to the generators and circles
of the cylinder. The present analysis might be extended to
include other reinforcement configurations in the same "equi-
valent shell" treatment. For the development of a theory to
investigate "discreet" stiffening elements, the basic develop-

ments of the earlier chapters would havé to be changed.

As already indicated, it is entirely feasible to consider
the influence of boundary conditlions on the prebuckling de-

formations in the static analysis.

Except for the verification of the static reduction of the
present theory with Card's experimental results, a compari-
}son of the "dynamic" theory with practical experiments 1is

lacking. A short discussion of such possibilities is given

below.

The Applied Mechanics Laboratory of Syracuse University has
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successfully developed a process to make photoelastic mono-

coque cylindrical shells of extreme accuracy within certain
dimensional ranges. No such process 1ls presently available

to produce stiffened cylindrical shells. The writer spent a
considerable amount of time to put together a slix-stringer
externally stiffened cylindrical shell. Unfortunately, it
collapsed under the slightest touch of a statlic load.

The stringers were carefully cut from an avallable photoelastic
cylinder as segments of the lateral side, thus providing the
appropriate curvature to match the monocoque cylinder to which
these segments were glued. Thlis method is inadequate, however,
toproduce closely-spaced stringer- and ring-stiffened clrcular
cylindrical shells in large quantities, and it provides for

no variation of the dimenslons and geometries of the stiffe-
ner-shell structure. In dynamic testing, it is to be expected that
the sample will be destroyed in each test run, in contrast to

the slowly-run static test, which can be readily confined

to the elastlic regime, thus allowlng for repetition. In addition,
the presently used photoelastic material seems to lack toughness
for impact-type loading. Embrittlement seems to increase as
storage time lncreases. A research program 1is envisioned in
order to study the manufacturing of closely-spaced stiffened
cylinders made out of photoelastic material. Such shells could bg
loaded dynamically on the MB-testing machine which allows for pro-
ramming the endshortening. Possibly, the AVCG-Shocktester could
be utilized. The history of the buckling précess could be recor-

ded with a high-speed movie camera (Photoeleastic patterns).
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APPENDIX A : SOME DETAILS OF THE BUBNOV-GALERKIN PROCEDURE.

The algebraic evaluation of the Bubnov-Galerkin equations
(V-11) is extremely lengthy. While it is not intended to
present all detalled calculations, some intermediate

results are given in this appendix.

H is calculated in (V-10) by substituting the radial displace-

ment terms from (IV-18) and the stress function terms from

——

(IV-19). In the latter, N°7 1s replaced by (IV-27). Thus,

one obtains:

H = &*Dy [(£-F5)sinaxsinfy - #(3:-g0) cos24x + ¥ ~goJtes2xx osBy]
+ 288" Dpz2 [(f ~fo) stnwx sinfy + #(91-gs) cos 2x os 23y |

+ 3% Do [(F,-fo)sinaxsinfly = #(31-go) c0s2By + $(3,~go)casdxcosify/
+ x*S, [ A S/hmsfnﬁa er/AZS/h.SM S/hﬂ; f-ﬂ;&};msbﬂﬂ,

+ 16 Ay Cos 20 + (6 Ag cos2nx Cos2By +256 Ay CoS 4xX

¢ 256 g cos Yo 0sZBy (6 }o0S 2KX cos By ]

= 26825, [, sinaxsinfy +9 deSin 3ax sinfy + VAsstnixsin3By

+16 D¢ Cos 24x cos2fy + 64 Ag cos #xx eos2fby 64 AotosZaxcastly |

+ (3%Sp [Aisinax sinfly + Ao sin3ax sinfly + &1 s Smax st 3By

# 16 s cosZBy + 16 A¢ cos 2xx sy +256 Ay os 4By

+ 16 2g cos Yax cos2fy +256 ko CosZxx s %6y [

r & BE[- A sin‘axsin'By - Thefi S KX SIN3KX s/njdds

(continued next page)
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- \sf, sinax sinfy sin3By — 4w f, sinax costxsmﬂi

- 4 Ao, stnax os2ax sinfly cos2By (6 2y, sinax costx sinfy
—16 A f; Sinaix cos#ax sinfiy COSZ/,’; ~¥ o fi Sinwxcosaxsinfly oAy

%'_3 _o‘/\_/ex £ sinax sinfiy + a‘z XA: (f, ff)smmsm/ﬁ;
%L 3;4' (f %, f e )S//?o(XS/ﬂﬂJ o 4/ e (fidr - fr 70 )5//709(5//7/2}
v N g, sinaxsinfly sy + 722 Sthdnx sin By casdfy
+ MG SIneX 5/ﬂ3ﬂ; cosgﬂa + 4G €03 2RX €S 28 y * ¢4 cosZo(xcasg%
+ 16 % g, costax cosZfy + 16 Ag g, Cos #%x o5 28,
+ 4 No gu oS2x sy sy + Az Mo 21 0SBy

An &%
- B (B9 -Falenty - g (-9 oty
r 4 lflT;,R (3" go5,) 053y = Dy g4 Sinwx €05 20x sinfly o2y
- Th S17 30X C0S ZAX 5/}7/%, cos%y -As v S/hxxcosZooc sxé%e ros;%
= 4 Dy g4 <08 Jux cos2fy — 2 G €05 2x cas 2By ~1 Dy Cosdx ostincas2fy
- 16 A? 3_ ) C0S2wx Cos %ekx COS 2,5; 442,,, & OS2 cosdfly cos{fy
- B gty + G (- stnasty
v oL (37~ 5.9 )“052*" 0slfly = g (3 ~geg) B 2x asify |
+ 24 ﬂ?[ A f; cos xxcosﬁa + 3 A, f, cosax cos3ux cos Z/S}
+3 25 £, cos'xx cosﬂJ cos3By +4Afe Sth 2nx COSKXSinZfy cosﬁ/
+ 8 Rq o Stn Yox Cosax sinlfBy CosBy #8 Aoy Sin2x cosax sin'iy cosfy

(continued next page)
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N g5 Z'xx cosux sinZfy cosfy + 3Az 3o 51 2%X €05 IAx sindfy @shy

i 375 9 SInZRK COSAX 5in2fy cos Yy + #Aug, St Zux 5in°2Yly

+ 8 Mg gu SIn2RX Sin 44X sin"2By + 8 ho G sin"2ax stn sy sin4fy ]

¢ L[~ fy sin )X sin' By = Ao, sinax sin3%x sin Sy

- 9 & £, sin'ax snfy sin3By - 4As f; sinkx sinffy cas 3By

— 4 )y fo Sinex cos2ax sinfoy 052y~ 6 s sinaxsinfy cas ¥y

_y 29 f, Sinax cos $ax simfy cos 2By =16 Ao Stnax cas 2k smfycostfly
_Qx £, sinax sinfly + b go SinAx casrxsmnfy

F )Z % 51 3%X cosZaxsinfy + 942 SINKX o5 2ex SIh 38y

+ 4 As g, cos2ax 0Py + 4 Ae g C0S “2ax 0s2By +16 Ay 3, 05 ax Cosy

+ ¢ Z? g, cos 2ux €0S #kx cosz,a(, +16 A G Cos Jux cos %J
Nox %1 cos2ax = As g Stn&x cosZxx swﬂ; ¢os2f3y

- ) L 31 Sin 34X os A sinfy cos2fy = 93 4, Sinix cos Zax sin3fy (0SB,
~ 4 As g1 cos 2xx cos ij - 44 2 ¢0s “2ax ¢os 2/%;
- 16 Xg 903 28 c0sLfy eos 4By -4 Ag gu COS2AX <05 Yok coszzlﬁa

~16 Mo G cos “Zax cosZBy €0 “by = 73@{— 3 Cos2ux cosZfy J
* %7'[ A, SIn&x s/nﬂ; +9 A, stn3uxsinfly +As SINKK 3'}73/5'1
U Dy COS 28K + ¥ Ag cos 2ux COSEBy +16 Ay €OS FuX

+16 2 oS Yox (wZP; + U Ap 0s 2AX cos‘/ﬁy +.411Eoz

Ao A2

(continued next page)
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B R -5 9 + 2 g o2l
*"7[3:1 sinax sinfy +,;’-%§2' -% %—?; ¢0s ZAX
_é gg' cosZﬂy + @'- Z—Zé' 05 2RX 6052,5;]
AN [ %;le SInAx SIhﬂJ +_z—2?' COS 2 szfa ]
_ I %: (a*cosZrx +[3"cos3By)
(A-1)

The first Bubnov-Galerkin equation, e.g.
L MR

///—/sim&xsfnﬁ; dxdy = O

o O
is evaluated with H from (A-1). On integrating the above
expression, a great many terms vanish., After a considerable

amount of algebra, the following equation results:

(f,~fo) [#*Dy + 24°87 D), +B¥0] + A [4"Ss -2 85z
RS # T ¢ B (200 ki) - B (' 42 )]
ra B[N EN+E ] +?7;:' (F-ff)
%, 2 2 z — A
“fa 9 -F3) - g =) + P G = 0
(A-2)

where the abbreviation,

m, = m +(9(zf~ﬁz}-[.,-,; (A-3)
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has been introduced.

Inserting the A's from (IV-10) and N” from (V-9) into
2
equation (A-2), solving for iﬁ , leads to,

dtt
©L_Bf +Bg v Bifig + Bufigl +EF
+ B -t B
6][1 + &y (A-4)

where a considerable amount of algebra has been omitted,
and where the coefficients B are defined by:
(245, - 25825 18" £)
! Y 152 “D )= (& 00 =LA /2 2
b m, (4D ﬁ ﬁ ) T (8% + 2838° A +8* A2 )
E N 3 ¢ 1 & 2
’ o('*(of' o ) + B (3 "‘f?‘) - 2B 9091

16 Ay, m, 164, 7 24, M,
([« *117/3) (fo i90) g _f (& "MZ,Z
T8, (Ay- ) GART 24, |
(A-5)
B - G (8%, - 2428, 445, + %)
27T, (8 By + 28 By, + Az )
ﬂ6¢f£§$ J?xjgvf; .
m (#*Ay +24° IAIZ +ﬁ"4472) ¢, (814*4, */3422'412 "‘/5"427.
, 9B foge

v, (%4, 1847324, +81B*An) (4-6)
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B _ 2487 (%%, 2“/"15/1'%3&*%) B (*S+iz)
3 ’177, (“VA” ""20(%1;4/2 +ﬂ,412) 'ZAy m

4 =42 Ss; + 4/3( 2 A/:ﬂz)
YN 44,,/?“ "l R, (- B5)

(A-7)
5 _ ‘fﬂ(f A ?ﬂ(“/g“
¥, (A, + 2B Aa t fh) 47 (B8 8K B e P ez )
_ %lf/y , 5@9
&, (A*Au +/X°("ﬂ"A/z +8B %) — 32Au M,
ot s 22"
16 4227, 32m, (hyg - -4-73—)
An
(A-8)
B.=- a*  _ 38* (o(zv‘é?ﬁz)l
5 /6411 77, 16 A// 77, 3 m, (An-%;_i)
(A-9)
A
Be (4" + "ﬂ)V (A-10)

ml L (Au ht %é)
¥ Y
5, 0 2608 bl B S A

i &g:ws,, 25 B )
m, (4%Au +2o<ﬂ‘.4,z +f3 YAsz)

(A-11)




Turning now to the second Bubnov-Galerkin equation, e.g.
L R

// H sinax sin'By dxdy = O

and proceeding as before, leads to:

(? ;,)[30(9‘0” -/-20(/920’2 +3ﬂ .z 4‘A,,R‘]

-84 Ay [&%5 # tm]"' #2¢ [4'S, 2"(%1 12 "ﬁtszz *42]
_ 8B S, + B[~ +2—(az+as)+xﬁg [2(2 +4¢
_)6 —27 -28)1'-29-#2/0-‘}- po z(“z 4’:/32/
o (Rt ?')*m (o i°i')*’3z%'(ﬁ?' +9)
+/28—%(g/3‘gpf:) 8'4; (7[ f) 324, (fl ?’

2 — 2

—%%— g.@)*“” fé"mez%g-':O

(A-12)

where the abbreviation,
m, =m + £ («*+8%) 15 (4-13)
2 - m 3 )
has been introduced.

The ;\ 's from (IV-10) and No,, from (V-9) are introduced

into (A-12). After consliderable algébra, the resulting..

2
expression is solved for gz? , which becomes:
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(A-14)

The coefficlents C are defined by:

4/6 (34%D, 1"20‘/320/2"'5ﬁ9012 * %A, ,?")

_ 32 (= “Su f’ﬁ t 16 (4*Su 2“1/32512 "'ﬂ ez * : )
1Ay M, " 9, (% + KB A + 342

_328*Sh | 3% (S, i) , phrs)

7412 m, qu/ m, 9A m,
_8BSnge 4 & (s +ge o) 8 Ba('S, -Zu’JB’Sn*ﬁ Sat i)
Iy in, T Gl i, («“A,, 25 8%h £ 6Aar)
Zo(" 2 B* Z"

*qm Tog'o/’(,, +2u*f3*An + B'An) * 144 A, Ty (A
+ ‘% o("ﬂ”g

18 m, (/5 &%y +3 828 A+ B ) 1T (4%, +8x 18y +6/6%z2)

| PR () A
6'”11 (Au-_z:i) 3401?”’1 (422 ‘%’)

M (fotdge) _ ﬁjo 4Ap
© Ay m, ShRE,  GAL R, (- 2)

(A-15)
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C‘ __ 164 (7%, - 2478 5/z»L/3"Szz+K 164*8 4 9
2 iy (4%Pu # 2B A2 +fAzz) I, 5%h 1N Bt )

44484 20 45" 20
Py, (814 Ay +134 B, +/3",4u) 7, (4% Ay +13 8823/ z)

(A-16)

C.n AW YTR) | 4B 'S, 20, 155, + S2)
3 3 »41/ ﬁz 30772 (0("4,, +24 /62/4/2 fﬁ 4422)
+ 44\1,5151,7, A/3 (0( + ﬁﬁ ) El
34, M, 241; R, (A, —%'1) 24, R,
(A-17)
C = 4 *ﬁﬁlszz + 168°B%(a%S,-24B°5, *‘ﬁ‘iszz* 2_77
Y Gl m, 7, (4 s“/4// "'29(%2/4/2 7"%{“/422)

L 28, ks (e 4RE) 48NS +eR)
?/4:/'?’"’ 9 A, K m, (Azz - —";") 94, ",

(A-18)
C =- L6478 4«"A"
5 7 m, (°< “Au +2x /31'4/2 ﬁ“Azz) ™ (3/ YA, +184 ﬁzA/z »"/3"/422. )
_ 4a*p! _fA° 4
- 70, («%Ay + (8B A t8IBAn) A, FApm,
4:3 /3 ) ﬁ“

6 m, (Au. ;'9) éAa ﬁz

(A-19)
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C; __35pt 174 24%A*
6" 44 Ay, NI 9 My (4%A, + 28°8°Ar +8"%22)
"ﬁ ‘ﬁﬂv
/3 'mz (/60( "Au +84 1#:4[2 +ﬁ Azz ) /3 'm,_(o( "Ay, + &4 %1/4/2 7‘/6/3’/422)
_ (x*+ 27
X’m:. (417_——73) (A-20)
A 72
s *‘];ﬂ )V, -
GREEAT(y .
C5=_ /6 413 Vo (4-22)

10 R L (A-25)
Cy =P (340, #2480 #38 "0 * A
, 320 ('S tag) _ 4B +j° S+ 4z)
9 AII 'mz ' 4'4”

4 Lo go (8% = 2438552 +/3°Ss + 32 &) %(‘,8 o (85 28BS 85,0t 34?)
9 m, (0(“/4,, *20,( %ZA” -/-'/3"1412) 7’”7, (ﬂ“A// )"20(2/81411 f‘ﬁ /42.2.)

q.,g?-/g S f-g.} BZﬁgoSn _ 25 (fo )

qA‘u 'mz ?A’umz 94{/(”13
24 (< *:é’ﬁ)(f ‘t3ge) ,  4hs g0
9 4y R, (A - 45 Th; R* 7, (A~ )

(A~-23)




_ APPENDIX B

: THE COMPUTER PROGRAM OF THE COMBINED METHOD

1. A Summary of Composite Shell Parameters.

_ _Eh

K= -

kr" /iEh
_Eh _

Ke= 200" h

Kp = k“‘"k’ Z(Ip)

Ks = Lyt

KK: f@AR

kﬂs K+KS IPZ %&

IQK=K/-kk=—l—E-€T+—E-5AR
-'/Oh+/06’4$ *ﬂk

I, /a “py ISc +hs3 e chw‘Aan
= m (1) I
m. = 1?) +§6( +p)];7,

iy =S5,
feb = g“gﬁk 2
3 K Fss
" /Gskm K-
S, .1 KueFe +Ks Tes
2= 2 kI(;KnR - kP
S,. = _Kus Tab
* '(ns /Cm ‘kl'l
S - _kie Fs
(] k”_g (HR _k'z
S, - Kefeo
Kius kng = Ko
A = k/‘lS
" Kies Ky - K
A = 5o — 22
L ZKG kh.s:(/nk‘/\/#z
&
Ais = Kuns Kie =Kt
A= i

Kns King K"

153



154

| E _ _vER® __Eh _eh_ g
D= lz_(;;—y’-) D’ B 12(1-vY 06 R2(l+y) ~ 6 (=)D

D= Eyfio- B [Lc +BA]  De= 5o~ Grllac + 3ehel

DQS = 6d§ \].; DG R= e

=2
Dﬂé = .D/‘ DS ,257' yz) d p..Sc‘f‘l.sAS]

DH/E’ D"‘Dﬁ ‘—(T_z)' T[I;C*ZRAF]

3
Dﬂg‘s: Dg‘/‘Dss = 'Gi *""(LS ﬂ”CR=DG.+Dg ® 66/7 * GgR]/;

D, = Dg + 1 (Dss *Dek) D;_= D, +4% (DH&S *Dﬁc,e)
- _Kur fss er = kb Fss Tas
= Drs - Kins g -k Dn~ B+ [ %
ke Fen

Lo = Do Kies Kz -Ko®

A=Ay by + S py=2 (A Dg # A D)y = 2545,

My = Azz D// + 4 A/Z 0/2 I All Dzz +Z2 (511522 +25/§)
/“4, = 2 (Azz D/z 7"/4,1 Dz,-ZSp 522) /4.5‘= Azz 022 7"522;-
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2. The Annotated Fortran-Pitt Program

The computer program presented below is written in Fortran-Pitt
Code Language (Pitt:University of Pittsburgh). A few comments
about 1lts structure seem necessary. The coded quantitiles

follow generally the abbreviations used in the main text of

this dissertation, except that capital letters are used, inclu-
ding the subscripts of these abbreviations. Whenever the
beginning letter of the abbreviated quantity starts with I,J,
K,L,M or N, the letters A, B etc.,are used as the first letter
of the coded quantity, preceding the letters of the usual symbol;
thus, for example, v is coded as ANU, which also shows how the
Greek letters are translated.

The program begins with the generic calculation of FUNCTION SRNX
which is the expression for ﬁ;x (V-9). Both, constant and expéonen-
tially decaylng rates of endshortening, are incorporated.

The SUBROUTINE DRYZ computes the quantities Rl and R,, which

2
are identical with Fl(x,y,z) and Fz(x,y,z) of (VI-2). The FUNCTION
and SUBROUTINE procedures are used in the main program.

Two nested DO loops follow. They execute the program several
times. For the given input data of thls particular program, all
computations are executes first for n=6, for m-values starting
from 2 up to lo, in steps of 2. The same computation cycles then
follow for n=8 and n=10.

The statement NPROB=1 initiates the calculatlion for the internally
stiffened shell first, followed by that for the externally re-

inforced shell, which 1s controlled by statement 799 near the
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end of the progran.

There follow the geometry and material input parameters for
Card's shell, in this particular case, including the values

for K’ fo’ 9] and Vo'

XS and XE are the values of t at the beginning (here zero) and
the end of the antlcipated time period for which the computation
1s desired. INT is the number of steps into which this period
is devided.

The calculation of the composite shell parameters follows their
definitions, as can be seen from the summary of these parameters
of this Appendix.

The computation of the B's and C's traces thelr definitions

in Appendix A, except that AMBAR=Ti replaces ﬁl and mz. We con-
clude from (A-3) and (A-13) that rotatory inertia is therefore
not included. The TEMP terms signify temporary storage of the
individual terms that make up the B and C expressions.

The RAT1 and RAT2 ratlos measure the influence of rotatory
inertia. They are numerically smaller than one. The smaller
quantity, RAT2, is utilized in a control statement that offers
the choice of doing the calculations agailn with the rotatory
inertia included. This is shown by statement 250 later in the
program.

The P-values are computed for use in the FUNCTION SRNX.

HT is the step size as opposed to H, which represents the mono-
coque shell thickness.

The Runge-Kutta method is initlalized with 790 and the subse-
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quent statements.

The expressions involving ICAL are print control statements.,
In this case, only every tenth calculation is printed-out.

The DO 233 stores the four initial "Runge-Kutta™ values in the
appropriate locations,

The expressions following statement 180 are the Runge-Kutta
formulas (VI-3).

After statement 233, the computation is continued with the
Predictor (VI-5) and the Corrector formulas (VI-6). CALL DRYZ
involves the computation of the second derivatives of the pre-
dicted y and z, each time. Two more iterations are performed.,
ERY and ERZ are the errors between the last predicted and
corrected values and they are printed out.

The DO 237 and the following statements relocate the appropri-
ate values for the next step in the computation.

The actual program is shown on the following pages.
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11

701
699

177
178

60
Lo

DIETZ, W. SHELL DYNAMIC RESPONSE
COMPILE FORTRAN, EXECUTE FORTRAN, DUMP

FUNCTION SRNX (T,Y,Z,G,P)

DIMENSION P(4)

IF (G) 2,1,2

S=p(1)*T

GO TO 3

S=P(1)*(1.-EXPEF(-1.*G*T))/G
SENX=S=P(2 ) *Y*Y-0,75%P(2 ) *#Z*Z+P(3)*Z+P(4)
RETURN

END

SUBROUTINE DRYZ (XT,Y,Z,B,C,G,Rl,R2)

DIMENSION B(7),C(9)
RIT=Y#*(B(1)+B(5)*Y*#2)+Z*(B(2)+(B(3)+B(4)*Z)*Y)+B(7)
R2T=Z%(C(1)+Z*(C(3)+C(6)*Z) )+Y*(C(2)+Y*(C(4)+C(5)*Z))+C(9)
IF (G) 10,9,10

R1=R1T+B( & ) ¥Y*XT

R2=R2T+C( 7 ) *Z*XT+C(8)*XT

GO TO 11

P=-1,*G¥*XT

PE=(1.-EXPEF(P))/G

R1=R1T+B(6)*Y*PE

R2=R2T+C(7 ) *Z*PE+C(8)*PE

RETURN

END

NN=6

MM=0

MM=MM+2

PRINT 177

FORMAT (39X,1HM,39X,1HN,40X//)
PRINT 178, MM, NN

FORMAT (38x 12 38X,12///)
NPROB=1

Z28=0.165

PRINT 60

FORMAT (45X,10HINTERNALLY,11X,9HESTIFFENED,45X///)
ANU=0.3

GAMA=0,

E=10,5%10,%%*6
ES=10,5%10,%*6
GS=4,038%10,##6

GR=0.

ER=0.

RHO=2.59/10.0%%4
RHOS=2,59/10.0%*4

RHOR=0,

H=0,0283

AS=0.02926
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AR=0,.

DDSTR=1.
DLRIN=1000.
SISC=2,2160/10,%*4
RIRC=0.
SJ8=7.242/10,%#%5
RJR=0.

ZR=0.

AM=MM

AN=NN

R=9.55

CL=38.
F0=0.,014
G0=0,014
V0=100,

XS=0.

XE=0.010
INT=1000
DIMENSION B(7)
DIMENSION X(5)
EQUIVALENCE (F
EQUIVALENCE (G
EQUIVALENCE (VO
ANUD=1,-ANU*#2
AK=E*H/ANUD
AKNU=ANU#*AK
ANUG=1,+ANU
AKG=E*H/(2.*ANUG)
AKP=AKNU+AKG
AKS=ES*AS/DDSTR
AKR=ER*AR/DLRIN
AKMS=AK+AKS
AKMR=AK+AKR

yC(9),P(4)
s Y(5),2(5)
0,F0)
0,G0)
,VO0)

AMBAR=RHO*H+RHOS*AS/DDSTR+RHOR*AR/DLRIN

D=E*H#%*3/(12,%ANUD)
DNU=ANU*D

DG=(1.-ANU)*D
DS=ES/DDSTR*(SISC+ZS*#2#AS)
DR=ER/DLRIN*( RIRC+ZR¥*#*2*AR)
DGS=GS*SJS/DDSTR
DGR=GR*RJR/DLRIN

DMS=D+DS

DMR=D+DR

DMGS=DG+DGS

DMGR=DG+DGR
D1=DG+(DGS+DGR)/2.

D2=DNU+( DMGR+DMGS)/2.
FSB=ES*AS*ZS/DDSTR
FRB=ER*AR*ZR/DLRIN
DENOM=AKMR*AKMS-AKNU##2
D11=DMS-AKMR*FSB#*#*2/DENOM
D12=D2+AKNU*FSB*FRB/DENOM
D22=DMR-AKMS#FRB#*#2 /DENOM
S11=AKNU*FSB/DENOM

S12=( AKMR*FSB+AKMS#*FRB)/(2 . *DENOM)

»D2Y(5),D22(5)
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S22=AKNU*FRB/DENOM

Al1=AKMS/DENOM

A12=1./(2.%*AKG)-AKNU/DENOM

A22=AKMR/DENOM

Al 3=AKNU/DENOM

ALPH1=AM*3,14159/CL

BETA1=AN/R

ALPH2=ALPH] ##2

ALPH4=ALPH2 ##*2

BETA2=BETA] #%2

BETA4=BETA2 ¥%2

TEMP1l=-( ALPH4*D11+2 , *ALPH2 #*BETA2*D1 2+BETA4*D22 )/AMBAR
SUM1=ALPH4#S11~2 ., *ALPH2*BETA2*312+BETA4#*S22+ALPH2/R
DEN1=ALPH4*A11+2 , *ALPH2*BETA2*A12+BETAL*A22
DEN2=81 . #*ALPH4%*A11+18 , *ALPH2 #*BETA2*#A12+BETAL*A22
DEN3=ALPH4*A11+18,*ALPH2 #*BETA2*A12+481 , *BETA4*A22
DEN4=A22-A13%##2/A11

DEN5=16 . *ALPHA4*A11+8, *ALPH2 #*BETA2#A1 2+BETA4*A22
DEN6=ALPH4*A11+8,¥*ALPH2 *BETA2*A12+16 , *BETA4*A22
SUM2=ALPH2+BETA2#A13/A11
SUM3=ALPH2#*S11+1./(4.*R)
SUM4=ALPH4*S11-2 , *ALPH2*BETA2*S12+BETA4*S22+ALPH2/ (4, *R)
TEMP2=-SUM1*#2/( AMBAR*DEN1 )

TEMP3=ALPH4*( FO*#2+GO*%*2)/(16.*A22*AMBAR)
TEMP4=BETAL*( 3, #FO*#2+5 ,%GO**2/2,)/(16.*A11*AMBAR)
TEMP5=-ALPH2*BETA2¥S22#G0/ (2., %A22 *AMBAR)
TEMP6=SUM2* %2 # ( FO*#2+43,%GO**2/4 ) /(8. *AMBAR*DENY4 )
TEMP7=-A13*SUM2*GO/ (4 ,%A11*R*AMBAR*DENL4 )
TEMP8=-BETA2#*GO/(4.*A11*R*AMBAR)
TEMP9=-BETA2*GO*SUM3/(2.*A11*AMBAR)

B(1 )=TEMP1+TEMP2+TEMP 3+TEMP4+TEMP 5+TEMP6+TEMP7+TEMP8+TEMP9
B10=TEMP1+TEMP2
TEMP1=-ALPH2 *BETA2 *FO*SUM1/( AMBAR*DEN1 )
TEMP2=ALPHU4*BETA4*FO*GO/( AMBAR*DEN1 )

TEMP3=9 . *ALPH4*BETA4#*FO*GO/ (4 . *AMBAR*DEN2 )
TEMP4=9 , *AL,PH4*BETA4*FO*GO/ (4 .*AMBAR*DEN3)
B(2)=TEMP1+TEMP2+TEMP3+TEMPL

TEMP1=2 ., #ALPH2 *BETA2 *SUM1/ ( AMBAR*DEN1 )
TEMP2=BETA2*SUM3/(2.*A11*AMBAR)
TEMP3=ALPH2*BETA2#S22/(2.%A22 *AMBAR)
TEMP4=BETA2/(4.*A11*R*AMBAR)
TEMP5=A13#3UM2/(4.*A11*R*AMBAR*DENA )

B( 3)=TEMP1+TEMP2+TEMP 3+TEMP4+TEMP5
TEMP1=-ALPHU4*BETAL4/( AMBAR*DEN] )

TEMP2=-~9 , *ALPH4*BETA4/ (4 ., *AMBAR*DEN2 )

TEMP3=-9 , *ALPH4*BETAL/ (4, *AMBAR*DEN3)

TEMP4=-5 ,%#BETAL/(32.#A11 *AMBAR)
TEMP5=~ALPH4/(16.*A22*AMBAR)
TEMP6=-73,#SUM2%%2/( 32 . *AMBAR*DEN4 )
B(4)=TEMP1+TEMP2+TEMP3+TEMP4+TEMP5+TEMP6
TEMP1=-ALPH4/(16.,%A22*AMBAR)
TEMP2=-73,#*BETA4/(16.%A11*AMBAR)
TEMP3=-SUM2##2/( 8, #*AMBAR*DENA4)

B( 5)=TEMP1+TEMP2+TEMP3
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. B(6)=SUM2#V0/( AMBAR*CL*DENL)
TEMP1=FO#*( ALPH4#D11+2 . *ALPH2 #*BETA2*D12+BETAL*D22 ) /AMBAR
TEMP2=FO*SUM1*#*2/( AMBAR*DEN1 )
TEMP 3=-FO*GO*ALPH2 *BETA2 *SUM1/ ( AMBAR*DEN1 )
B(7 )=TEMP1+TEMP2+TEMP3
TEMP1l=-16.,%*(3,*ALPH4*D11+2 . *ALPH2 *BETA2%D12+3 ., *BETA4*D22
1+1./(4.*A11%*R*%2))/(9.*AMBAR)
TEMP2=-732 ,#SUM3%%#2/(9,*A11 *AMBAR)
TEMP3=-16,%SUM4*#2 /(9 , *AMBAR*DEN1 )
TEMPL4=-32 , *BETAU*S22#%*2 /(G ., #A22 *AMBAR)
TEMP5=-8, *BETA2 *GO*SUM3/(9.*#A11*AMBAR)
TEMP6=BETAL*( FO*#2+GO*#*2 )/ (9 ,#A11*AMBAR)
TEMP?7=-8,*ALPH2 *BETA2 *S22#*G0/(9 . *A22*AMBAR)
TEMP8=ALPHU4*( FO**2+GO**2)/(9,#A22*AMBAR)
TEMP9=-8 , #ALPH2 #*BETA2 #GO*SUMA4/ (9 . *AMBAR*DEN1 )
TEM10=2 . *ALPHA4*BETA4*GO**2 /(9 , *AMBAR*DENL. )
TEM11=ALPHA4#GO**2 /(144 ,#A22 *AMBAR)
TEM12=BETA4*C0*%2 /(144 ,#A11 *AMBAR)
TEM1 3=ALPHU*BETA4*GO**2/ (18 . *AMBAR*DEN5 )
TEM14=ALPHU*BETAL*GO#**2/ (18, *AMBAR*DENG )
TEM1 5=SUM2 ##2 % ( FO*#2+3 , *#GO*#2/4 )/ (6. *AMBAR*DENA4 )
TEM1 6=~A13*GO*SUM2/(3.*A11 *R*AMBAR*DENY )
TEM17=BETA4*( FO**2+3 ,#GO**2/4,)/(6.%A11*AMBAR)
TEM1 8=-BETA2+G0/(3.*A11*R*AMBAR)
TEM19=-4 ,#A13##2/ (9, #A1] #*#2 ¥R#*#2 #AMBAR*DENY )
C{(1)=TEMP1+TEMP2+TEMP 3+TEMP4+TEMP5+TEMP6+TEMP7+TEMP8+TEMP9+TEM1 0+
1TEM11+TEM12+TEM1 3+TEM14+TEM1 5+TEM1 6+TEM1 7+TEM1 8+TEM19
C10=TEMP1+TEMP2+TEMP 3+TEMPU+TEM19
TEMP1=-16,*ALPH2 *BETA2 #*FO*SUM1/(9 . *AMBAR*DEN1 )
TEMP2=16, *ALPH4*BETAU*FO*GO/ (9 . *AMBAR*DEN1 )
TEMP3=4 , #*ALPHU*BETAL*FO*GO/ ( AMBAR*DEN2 )
TEMP4=4 , * AL PHU*BETA4*FO*GO/ ( AMBAR*DEN3)
C(2 )=TEMP1+TEMP2+TEMP3+TEMP4
TEMP1=4 ,*BETA2*SUM3/(3.*A11*AMBAR)
TEMP2=4 , #*ALPH2 #*BETA2*SUM4/( 3. *AMBAR*DEN1 )
TEMP3=4 , #*ALPH2 #*BETA2#322/( 3. *A22*AMBAR)
TEMPA4=A13%SUM2/ (2 .%*A11 *R¥AMBAR*DENY )
TEMP5=BETA2/(2.*A11#*R*¥AMBAR)
C(3)=TEMP1+TEMP2+TEMP3+TEMPU+TENP5
TEMP1=4 , #*ALPH2*BETA2#3522/(9 . *A22*AMBAR)
TEMP2=16, *ALPH2 #BETA2%*SUM1/(9 . *AMBAR*DEN1 )
TEMP3=2 ,#BETA2/(9.*A11*R*AMBAR)
TEMP4=2 , %A1 3*SUM2/(9.%A11 *R*AMBAR*DENA4)
TEMP5=4 , *BETA2#SUM3/(9.*A11*AMBAR)
C(4)=TEMP1+TEMP2+TEMP3+TEMP4+TENP5
TEMP1=-16,*ALPH4*BETAL/ (9 . *AMBAR*DEN1 )
TEMP2=-4 , *ALPH4*BETAL4/ ( AMBAR*DEN2 )
TEMP3=-4 ,%#ALPH4*BETAL/( AMBAR*DEN3)
TEMP4=-BETAL4/(9 .*A11*AMBAR)
TEMP5=~ALPH4/ (9 .*A22*AMBAR)
TEMP6=-SUM2##2/( 6, *AMBAR*DENA )
TEMP7=-BETA4/(6.%¥A11*AMBAR)
C( 5)=TEMP1+TEMP2+TEMP 3+TEMP4+TEMP 5+TEMP6+TEMP?
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TEMP1=-35,*BETA4/ (144 ,%A11 *ANBAR)
TEMP2=-17 . *ALPH4/ (144 . #A22 *AMBAR)

TEMP3=-2 ., *ALPHU4*BETAL/ (9 .*AMBAR*DEN] )

TEMPY=-ALPHA*BETA4/ (18.*AMBAR*DEN5 )
TEMP5=-ALPH4#BETAL4/ (18, *AMBAR*DENG )
TEMP6=-SUM2%*2/( 8 ., *AMBAR*DEN4 )

C(6)=TEMP1+TEMP2+TEMP 3+TEMPY4+TEMP5+TEMP6
C(7)=4.*SUM2#VO/(3.*AMBAR*CL*DEN4)
C(8)=-16.*A13*V0/(9.*A11*R*AMBAR*CL*DEN4)
TEMP1=16.*GO%*(3,.*ALPH4#D11+2, #*ALPH2 #*BETA2*D12+3 , *BETA4#D22

1+1./(4.%A11%R**#2))/(9,*AMBAR)

TEMP2=32 . *GO*SUM3##2/(9,*A11*AMBAR)

TEMP3=-4 , *BETA2* ( FO**¥24+GO*#2 ) #SUM3/(9 . *A11 *AMBAR)

TEMPU4=16, *GO*SUMY*#2 /(9 , *AMBAR*DEN] )

TEMP5=-4 , *ALPH2 *BETA2*GO*#*2#SUM4/ (9 . *AMBAR*DEN1 )

TEMP6=-14 , #*ALPH2 #*BETA2*S22% ( FO**2+GO**2 )/ (9, *A22 *AMBAR)
TEMP7=32,*BETA4*GO*S22##2/ (9, *A22#AMBAR)
TEMP8=-2,*BETA2*( FO**2+3 ,#GO**2/4,)/(9,*A11*R*AMBAR)
TEMP9=-2,*A13*SUM2 *( FO**2+3 ,*GO**2/4,) /(9 . *A11 *R*AMBAR*DEN% )
TEM10=4 . %A1 3%*2#G0/ (9, *A11 *##2 #R**2 * AMBAR*DENA )

C(9 )=TEMP1+TEMP2+TEMP 3+TEMP4+TEMP5+TEMP6+TEMP7+TEMPS

1+TEMPO+TEM10

B61=SUM2*V0/( AMBAR*CL*DENA4 )
ATMBA=RHO*H#%3/12 .,+RHOS*(SISC+AS*Z3##*2 )/DDSTR+RHOR*( RIRC

1+AR*ZR*%2)/DLRIN

AMBA1=AMBAR+AIMBA#*( ALPH2+BETAZ2 )
AMBA2=AMBAR+AIMBA#*4 , *( ALPH2+BETA2)/3.
RAT1=AMBAR/AMBA1

RAT2=AMBAR/AMBA2

FINDING THE VALUES OF P
P(1)=V0/(DEN4*CL)

P(2)=SUM2/(8.*DENY)
P(3)=A13/(4.*A11*R*DENL)
P(4)=P(2)*FO*FO+0.75%P(2)*GO*GO-P(3)*GO
SINT=INT

HT=(XE-XS)/SINT

X(1)=-HT

Y(1)=F0

DELY=0.

Z(1)=Go

DELZ=0.

DY=0.

DDY=0.

DZ=0.

DDZ=0,

Y2=F0

Z2=G0

Y3=F0

Z3=G0

PRINT 80

FORMAT (43X,35HB'S IN SEQUENTIAL ORDER, 42X//)
PRINT 41,B
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41 FORMAT (//6E20.8/3E20.8///)

PRINT 90
90 FORMAT (43X,35HC'S IN SEQUENTIAL ORDER, 42X//)
PRINT 41,C
PRINT 100
100 FORMAT (33X,57HB'S WITH ZERO IMPERFECTIONS (B(2)=B(

17)=0),30X//)
PRINT 121,B10,B(3),B(4),B(5),B(6)
121 FORMAT (E20.8,20X,4E20.8////)
PRINT 110
110 FORMAT (33X,57HC'S WITH ZERO IMPERFECTIONS (c(2)=C
1(9)=0),30x//) v
PRINT 122, C10,C(3),C(4),C(5),C(6),C(7),C(8)

122 FORMAT (E20.8,20X,4E20.8/2E20.8///)
TB1=2.%3.14159/SQRTF(ABSF(B(1)))
TCl=2.%3.14159/SQRTF(ABSF(C(1)))

PRINT 366

366 FORMAT (17X,4HP(1),20X,4HP(2),20X,4HP(3),21X,3HTB1,21X,3HTCL,3X//)
PRINT 367, P(1),P(2),P(3),TB1,TCl

367 FORMAT (5E24.8//)

PRINT 77
77 FORMAT (//10X,4HTIME,13X,3HNOX,15X,2HF1,13X,7HF1-RES.,12X,2HG],
113X;?HG1-RES.,llX,UHZETA,hx///S
ICAL=10
DO 233 I=2,5
X(1)=X(I-1}%mT
Y(I)=Y(I-1)+DELY
Z(I)=Z(I-1)+DELZ
ICAL=ICAL+1
ENX=SRNX(X(I),¥(I),2(I),GAMA,P)
ZETA=(Y(I)+2(I))/H
179 IF (ICAL-10) 180,61,61
61 PRINT 150,X(I),ENX,Y(I),Z(I),ZETA
150 FORMAT (1X,3E17.8,17X,E17.8,17X,E17.8)
ICAL=0

180 CALL DRYZ (X(I1),¥(I1),z(1),B,C,GAMA,D2Y(I),D2Z(I))

AK1=HT#D2Y(I)

AL1=HT*D2Z(1I)

X2=X(I)+HT/2.

DY=DY+DDY

DZ=DZ+DDZ

Y2=Y2+HT#DY/2 .+HT*AK1/8.
Z2=Z2+HT#DZ/2 ,+HT*AL1/8.

CALL DRYZ (X2,Y¥2,22,B,C,GAMA,F1,F2)
AK2=HT#*F]

AL2=HT#*F2

X3=X(I)+HT

Y3=Y3+HT*DY+HT*AK2/2,
Z3=Z3+HT*DZ+HT#*AL2/2.

CALL DRYZ (X3,Y3,23,B,C,GAMA,F1,F2)
AK3=HT#*F1

AL3=HT#F2

DELY=HT#(DY+( AK1+2.*AK2)/6.)
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DELZ=HT*(DZ+( AL1+2.%*AL2)/6.)
DDY=( AK1+4,*AK2+AK3)/6.
DDZ=( AL1+4,*AL2+AL3)/6.
233 CONTINUE
XU=X(5)
235 XU=XU+HT
ICAL=ICAL +1
YP=2,%Y(4)=-Y(2)+4./3. . *HT*#*2%(D2Y(5)+D2Y(4)+D2Y(3
ZP=2 . #Z(4)-2(2)+4./3 . #HT**2#(D27Z(5)+D2Z(4)+D2Z( 3
CALL DRYZ (XU,YP,ZP,B,C,GAMA,D2YP,D2ZP)
YC=2. %Y (5)-Y(L)+HT**2/12 . #(D2YP+10. *D2Y( 5)+D2Y (4
2C=2 . %Z(5)=2Z(4)+HT*#*2/12 ,*(D2ZP+10.*D2Z(5)+D2Z(4
CALL DRYZ (Xu,Y¥C,zC,B,C,GAMA,D2CY,D2CZ)
YCC=2 . #Y('5)-Y(4)+HT##2/12,%(D2CY+10.%*D2Y( 5)+D2Y(
ZCC=2 .,%*Z(5)=2(L4)+HT*%#2/12 ,#(D2C2+10 . *D2Z( 5)+D22(
CALL DRYZ (XU,Y¥CC,2CC,B,C,GAMA,D2CCY,D2CCZ)
YU=2.*Y(5)-1(5)+HT**2/12.*(chCY+1o.*Dzz(5)+sz(
ZU=2.,%Z(5)-Z(4)+HT*%2/12 ,#(D2CCZ+10 . *D2Z( 5)+D2Z(
IF (ICAL-10) 239,240,240
240 ZETA=(YU+2ZU)/H
ENX=SRNX (XU,YU,ZU,GAMA,P)
ERY=ABSF (YU=-YCC)
ERZ=ABSF (ZU-ZCC)
ICAL =0
PRINT 236,XU,ENX,YU,ERY,ZU,ERZ,ZETA
236 FORMAT (1X,7El17.8)
IF (ABSF(ZETA)-200.) 238,250.250
238 IF (XU-XE) 239,250,250
239 DO 237 K=3,5
X(X-1)=x(k}
Y(K-1)=Y(K)
Z(K-1)=2Z(K)
D2Y(K-1)=D2Y(K)
237 D2Z(K-1)=D2Z(K)
X(5)=XU
Y(5)=YU
Z(5)=2u
D2Y(5)=D2CCY
D2Z(5)=D2CCZ
GO TO 235
250 IF (RAT2-0.99) 73,799,799
73 IF (ABSF(B(6)~B61)-1.0E-6) 65,65,799
65 DO 51 J=1,7
51 B(J)=B(J)*RAT1
DO 52 J=1,9
52 C(J)=C(J)*RAT2
B10=B10*RAT1
C10=ClO%*RAT2
GO TO 790
799 NPROB=NPROB+1
28=-0,165

))
))
))
))
4))
b))
4))
%))



- IF (NPROB-2) 50,50,199
50 PRINT 70
70 FORMAT (//45X,10HEXTERNALLY,11X,9HSTIFFENED,45X///)
GO TO 40
199 MM=AM
NN=AN
IF (MM-10) 699,700,700
700 IF (NN-10) 702,999,999
702 NN=NN+2
GO TO 701
999 STOP
END
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